传感技术的进步可以从制造系统中收集有效的数据来监视和控制。此外,随着物联网(IoT)和信息技术的快速发展,越来越多的制造系统变得启用了网络,从而有助于实时数据共享和信息交流,从而显着提高了制造系统的功能和效率。但是,支持网络的环境可能会在数据和信息共享过程中构成具有网络物理攻击风险高的传感器数据。指定的是,网络物理攻击可以针对制造过程和/或数据传输过程,以使传感器数据恶意篡改传感器数据,从而导致错误警报或监测中异常检测的失败。此外,网络物理攻击也可以在无授权的情况下实现非法数据访问并导致关键产品/过程信息的泄漏。因此,开发一种有效的方法来保护数据免受这些攻击的影响至关重要,以便可以在支持网络的环境中确保制造系统的网络物理安全性。为了实现这一目标,本文提出了一种综合区块链启用的数据保护方法,该方法利用了凸轮的不对称加密。提出了一项现实世界中的案例研究,该案例研究介绍了添加剂制造中收集的传感器数据的网络物理安全性,以证明该方法的有效性。[doi:10.1115/1.4063859]结果表明,可以在相对较短的时间内检测到恶意篡改(小于0.05 ms),并且未经授权的数据访问的风险也大大降低。
本文档的目的是为消费者和M2M解决方案以及远程SIM供应(RSP)体系结构提供嵌入式ICC/ ESIM的全面,特定的安全要求。EUICC是传统物理SIM卡的演变,可提供更大的灵活性,在移动电信方面的便利性。 EUICC应是一个由硬件和软件组成的离散防篡改组件,能够安全托管应用程序以及机密和加密数据。 ESIM(嵌入式SIM)由安装在EUICC芯片上的软件,该软件永久连接到具有MFF2的设备上。 这是一种硅芯片,它为将移动订阅详细信息存储到安全且值得信赖的数字格式中提供了安全的库。 RSP是移动电信行业中用于远程提供,管理和更新ESIMS(嵌入式SIMS)的技术和过程。 它允许消费者根据GSMA规格SGP.21版本3.0,SGP.22版本2.5和SGP.01版本4.3均引用了该文档,允许消费者远程激活嵌入在便携式设备,智能手机,智能手表等,ESIM和RSP体系结构之类的订户身份模块(SIM)。 与E(U)ICC卡有关的安全方面有各种国际标准化机构/协会。 GSMA,ETSI,3GPP,全球平台,SIM联盟(可信连接联盟),ISO/IEC在其中很少。 这些机构以及国家特定的安全要求所产生的规格是本文档的基础。EUICC是传统物理SIM卡的演变,可提供更大的灵活性,在移动电信方面的便利性。EUICC应是一个由硬件和软件组成的离散防篡改组件,能够安全托管应用程序以及机密和加密数据。ESIM(嵌入式SIM)由安装在EUICC芯片上的软件,该软件永久连接到具有MFF2的设备上。这是一种硅芯片,它为将移动订阅详细信息存储到安全且值得信赖的数字格式中提供了安全的库。RSP是移动电信行业中用于远程提供,管理和更新ESIMS(嵌入式SIMS)的技术和过程。它允许消费者根据GSMA规格SGP.21版本3.0,SGP.22版本2.5和SGP.01版本4.3均引用了该文档,允许消费者远程激活嵌入在便携式设备,智能手机,智能手表等,ESIM和RSP体系结构之类的订户身份模块(SIM)。与E(U)ICC卡有关的安全方面有各种国际标准化机构/协会。GSMA,ETSI,3GPP,全球平台,SIM联盟(可信连接联盟),ISO/IEC在其中很少。这些机构以及国家特定的安全要求所产生的规格是本文档的基础。本文档的简要说明开始了嵌入式UICC体系结构,其功能和远程SIM卡配置体系结构,然后继续解决EUICC的硬件,OS和元素的常见和特定安全要求。
深度学习是人工智能的一个分支,已被证明是改变医疗诊断和医疗保健的宝贵工具。通过高效分析海量数据集中的复杂模式,深度学习推动了医学影像分析、疾病检测和个性化医疗的重大进展。具体而言,在医学影像方面,深度学习算法在解释 MRI 扫描、X 射线和 CT 扫描方面表现出卓越的精度,有助于早期识别疾病并改善患者治疗效果。此外,这些模型可以分析广泛的患者数据,以支持疾病诊断和预后,最终实现更精确、更及时的诊断和治疗决策。虽然深度学习模型在医学诊断方面具有巨大潜力,但它们很容易受到对抗性攻击的操纵。这些攻击可能会造成严重后果,可能导致误诊并损害患者的健康。对抗性攻击涉及试图通过向模型提供精心制作的输入(称为对抗性示例)来欺骗模型做出错误的预测。这些示例是合法数据的修改版本,人类无法区分,但会导致模型非常肯定地对其进行错误分类。在医学影像分析领域,即使对医学图像进行微小的修改,例如添加难以察觉的噪声或进行微小的有针对性的修改,也会导致深度学习算法误解数据,从而可能导致误诊或错误的治疗建议。同样,在疾病诊断和个性化医疗方面,对手可能会篡改患者数据,诱使模型做出不准确的预测或诊断。
本研究的目的是现场检测使用激光粉末床熔合 (LPBF) 增材制造工艺制造的金属部件中的缺陷形成情况。这是一个重要的研究领域,因为尽管节省了大量成本和时间,但航空航天和生物医学等精密驱动型行业仍不愿使用 LPBF 制造安全关键部件,因为该工艺容易产生缺陷。LPBF 和增材制造中的另一个新兴问题与网络安全有关——恶意行为者可能会篡改工艺或在部件内部植入缺陷以损害其性能。因此,本研究的目标是开发和应用一种物理和数据集成策略,用于在线监控和检测 LPBF 部件中的缺陷形成情况。实现此目标的方法是基于将现场熔池温度测量(孪生)与基于图论的热模拟模型相结合,该模型可以快速预测部件中的温度分布(热历史)。该方法的创新之处在于,通过现场熔池温度测量逐层更新计算热模型提供的温度分布预测。这种数字孪生方法用于检测使用商用 LPBF 系统制造的不锈钢 (316L) 叶轮形部件中的缺陷形成。生产了四个这样的叶轮,模拟了 LPBF 部件中缺陷形成的三种途径,即:加工参数的变化(工艺漂移);机器相关故障(镜片脱层)以及故意篡改工艺以在部件内部植入缺陷(网络入侵)。使用 X 射线计算的
•CC EAL 6+认证的HW和OS•有效防止高级攻击,包括各种功能分析和故障攻击•多种逻辑和物理保护层,包括金属屏蔽,端到端加密,内存加密,记忆加密,篡改检测•对ECC NIST的非对称性算法的支持••支持ALGORMENT•支持ALGORMENTIS• AES模式:CBC,ECB,CTR,GCM,CCM•HMAC,CMAC,GMAC,SHA-256/384操作•HKDF密钥推导功能•小且非常薄的足迹HX2QFN20软件包(3×3 mm),具有最大0.33 mm高度•扩展的温度范围(2级),•扩展温度范围(-40555555555555555555555555550555555055505505050505050505050505号c。模式,最多1 Mbit/s)•安全数据或键存储的8KB的安全用户闪存•支持SCP03协议(BUS加密和加密凭证注入),以与安全身份验证器•符合NIST SP800-90B符合NIST SP800-90B•基于NIST SP800-90A的支持•iST ofient Inist in Inist Autional Inistiant Inist Autnection iS Austection I Inist Autional Iniast Auttimation Inist Intimation Inist Inist Auty Intimation Inist Inist Auty Intotiant Inist Intimation•序言。支持的协议: - i 2 c规范上的NXP SE05x t = 1。参见[1]。- SPI/I2C V1.0上的APDU运输| GPC_SPE_172。参见[6]。•物质准备就绪:A5000提供了必要的加密功能,以支持即将到来的连接智能家居设备的物质标准。
• 了解所有紧急出口、火灾警报、急救箱和电话的位置 • 实验室或车间内禁止饮食 • 大学内禁止吸烟。包括电子烟。 • 必须穿带盖的鞋子 - 禁止露趾鞋。 • 必要时必须穿戴实验室外套、安全眼镜、手套和防尘口罩。 • 离开实验室前必须洗手。 • 请勿摆弄任何看似正在使用或与您无关的东西。 • 告知工作人员任何故障、破损、溢出、事故或任何潜在危险。 • 大学和学院对丢失或被盗物品不承担责任。请勿将个人物品或贵重物品留在实验室内无人看管。 • 任何 ENV 车间或实验室均不允许使用带耳机的个人音乐设备(例如 iPod 等)。您可能听不到工作人员的警报或指示。 • 尊重所有其他实验室用户、员工和学生 • 尊重实验室管理层的决定并遵循指示 • 您只能使用经过培训和批准使用的设备 • 未完成入职培训的人员只有在主管技术人员或实验室经理的陪同和监督下才能进入 • 只有经批准的技术人员才允许进行维修或维护 • 始终尽快报告任何有缺陷的设备或危险情况。向主管技术人员或技术经理报告。 • 未先与技术人员核实,请勿从空间中移走化学品、消耗品或设备。您可能会阻止其他人工作。 • 保持工作区域清洁,并确保在工作完成后彻底清洁您的区域。
(Shri Jitin prasada)(a)至(c):区块链技术是一种新兴技术,是一种分散的,分布式的分类帐系统,可在计算机网络上安全记录交易。它使用密码学来确保没有中介机构的透明度,不变性和信任。每个块都包含数据,时间戳和加密链接,以创建安全的,篡改的信息链。因此,该技术有可能在任何涉及公共交易的数字系统中提供更好的问责制。它在土地记录和物业注册管理,数字身份管理,供应链管理和福利分配中都有潜在的应用。国家区块链框架(NBF)于2024年9月4日启动,提供区块链即服务(BAAS)。NBF支持分布式基础架构,智能合约,安全性,隐私,互操作性以及基于许可区块链的应用程序的开发和部署。NBF是通过研究人员,学术机构和政府机构之间的合作开发的许可区块链平台。这些包括高级计算(C-DAC)的开发中心 - 海得拉巴,孟买和浦那;银行技术发展与研究研究所(IDBRT)海得拉巴; IIT海得拉巴;电子交易与安全协会(集合)钦奈;国家信息中心(NIC)/国家信息学中心服务公司(NICSI);和IIIT海得拉巴。最佳实践,例如使用数据加密,证明存在数据而不揭示数据以及本地认证的权威等。这些机构共同努力,将国家区块链框架(NBF)设计为具有控制访问权限的权限区块链平台,以确保数据的安全性,隐私和机密性。已在设计中实现。国家信息学中心(NIC)已开发了基于区块链的农业和非农业财产解决方案,这些解决方案也可用于土地记录系统。土地记录的维护在有关州政府的权限范围内。
Open-Radio Access网络(O-RAN)是移动网络架构和操作中的下一个进化步骤,而近实的时间运行了智能控制器(近RT RIC)在O-Ran体系结构中扮演着核心角色,因为它在管弦乐层和下一代enodebs之间接口。在本文中,我们通过首先与软件定义的网络(SDN)控制器相似,强调了O-Ran中Centralized Controller的架构弱点。然后,我们对两个开源近RT RIC(µONOS和OSC)进行了两部分的安全评估,重点是新引入的近RT RIC的A1接口。在我们评估的第一部分中,我们使用现成的开源依赖性分析和配置文件分析工具来评估µONOS和OSC的供应链风险。在第二部分中,我们使用自定义的O-RAN A1接口测试工具(OAITT)介绍了由µONOS和OSC实现的A1 API的运行时安全测试。我们的供应链风险分析表明,我们评估的开源近rt RIC都有多个依赖风险和弱或不安全的配置。我们分别确定了211和285 µOS和OSC中的已知依赖性漏洞,其中82和190依赖项被评为高CVSS。A1界面在两种近方RIC中都导致了大多数依赖性风险。从安全性错误的角度来看,我们确定了有关访问控制,缺乏加密和秘密管理不佳的问题。我们对OSC和µOS的运行时间测试显示了以下内容。首先,两者都缺少A1接口的TLS。第二,驻留在非RT RIC中的智能控制器(非RT RIC)或RAPPS可能会损害近RT RIC中的政策,这可能会影响O-Ran的可用性。第三,非RT RIC可以利用A1协议通过近RT RIC进行秘密通信。第四,通过µONOS的A1置换容易受到服务攻击的降解(获得请求的10-60年代响应时间)和拒绝
Open-Radio Access网络(O-RAN)是移动网络架构和操作中的下一个进化步骤,而近实的时间运行了智能控制器(近RT RIC)在O-Ran体系结构中扮演着核心角色,因为它在管弦乐层和下一代enodebs之间接口。在本文中,我们通过首先与软件定义的网络(SDN)控制器相似,强调了O-Ran中Centralized Controller的架构弱点。然后,我们对两个开源近RT RIC(µONOS和OSC)进行了两部分的安全评估,重点是新引入的近RT RIC的A1接口。在我们评估的第一部分中,我们使用现成的开源依赖性分析和配置文件分析工具来评估µONOS和OSC的供应链风险。在第二部分中,我们使用自定义的O-RAN A1接口测试工具(OAITT)介绍了由µONOS和OSC实现的A1 API的运行时安全测试。我们的供应链风险分析表明,我们评估的开源近rt RIC都有多个依赖风险和弱或不安全的配置。我们分别确定了211和285 µOS和OSC中的已知依赖性漏洞,其中82和190依赖项被评为高CVSS。A1界面在两种近方RIC中都导致了大多数依赖性风险。从安全性错误的角度来看,我们确定了有关访问控制,缺乏加密和秘密管理不佳的问题。我们对OSC和µOS的运行时间测试显示了以下内容。首先,两者都缺少A1接口的TLS。第二,驻留在非RT RIC中的智能控制器(非RT RIC)或RAPPS可能会损害近RT RIC中的政策,这可能会影响O-Ran的可用性。第三,非RT RIC可以利用A1协议通过近RT RIC进行秘密通信。第四,通过µONOS的A1置换容易受到服务攻击的降解(获得请求的10-60年代响应时间)和拒绝
665-2 材料。665-2.1 标准行人按钮探测器:按钮必须高于外壳或与外壳齐平,最小尺寸至少为 2 英寸。按钮激活所需的力不得超过 5 磅。探测器必须防风雨且防篡改。665-2.1.1 外壳:外壳必须为两件式装置,包括底座外壳和可拆卸盖子。外壳必须为铸铝,符合 ASTM B26 中对合金 S5A 和 CS72A 规定的物理特性和化学成分。外壳或适配器(鞍座)必须符合杆的形状并提供齐平、牢固的配合。鞍座必须采用与外壳相同的材料和结构。用于木杆安装的按钮必须在外壳顶部或底部提供用于 1/2 英寸导管的螺纹孔。外壳背面应提供带有绝缘衬套的 3/4 英寸孔。未使用的开口应使用防风雨封盖封闭,并涂漆以匹配外壳。外壳必须采用粉末涂层,并按照军用标准 MIL-PRF-24712A 进行涂漆。外壳必须永久标记制造商名称或商标、零件编号、制造日期和序列号。665-2.1.2 按钮:按钮必须包括一个常开、机械酚醛树脂封闭、正作用、弹簧加载、单刀单掷触点的快动开关或压电驱动固态开关
