经颅磁刺激是一种神经生理检查方法,由脊髓,周围神经或肌肉刺激的电位记录,通过中枢神经系统中的电路路径或运动皮质。这种方法允许研究导致皮质运动场刺激变化的疾病机理。同样,精神药物对皮质活性和侵略行为的电生理测量的影响。在精神病学领域,精神分裂症,强迫症,注意力缺陷多动障碍和药物滥用领域的经颅磁刺激和诊断研究集中在埃塞哥部发生的研究上。
OVERVIEW OF CHINESE AND AMERICAN MARINE AIRBORNE LIDAR Yizhi Tan 1, 2 , Guoqing Zhou 1 ,Xiang Zhou 1,2,3,* , Jiandong Wei 1,2 , Jinlong Chen 1, 2 , Haocheng Hu 1, 2 1 Guangxi Key Laboratory of Spatial Information and Geometrics, Guilin University of Technology, No.吉安根路12号,吉林,广西541004,中国-gzhou@glut.edu.cn 212 Jian'gan Road,Guilin,Guangxi 541004,中国 - (1020180612,ZQX0711) @Glut.edu.cn 3 Microelectronics,Tianjin University,No.92 Weijin Road,Tianjin 300072,中国关键词:海洋空降激光雷达,海水响起,激光雷达开发,技术改进,硬件参数,技术差距摘要:作为21世纪最受欢迎的监视技术之一,Lidar在商业,军事和平民应用中应用。 论文主要介绍了中国和美国海洋激光雷达检测技术的开发过程,比较了中国和美国之间海洋空降激光雷达的硬件技术参数,并总结了中国当前的机载激光雷达检测技术和发达国家。 找到发达国家之间的差距。 它引入了该技术的最重要应用及其对科学技术发展的贡献。 最后,总结了技术开发中遇到的各种问题,分析原因并期待未来的发展趋势。92 Weijin Road,Tianjin 300072,中国关键词:海洋空降激光雷达,海水响起,激光雷达开发,技术改进,硬件参数,技术差距摘要:作为21世纪最受欢迎的监视技术之一,Lidar在商业,军事和平民应用中应用。论文主要介绍了中国和美国海洋激光雷达检测技术的开发过程,比较了中国和美国之间海洋空降激光雷达的硬件技术参数,并总结了中国当前的机载激光雷达检测技术和发达国家。找到发达国家之间的差距。它引入了该技术的最重要应用及其对科学技术发展的贡献。最后,总结了技术开发中遇到的各种问题,分析原因并期待未来的发展趋势。
为了增强蓝细菌的生长元有关弹性菌的生长,本研究使用共培养进行了直接筛查氰基细菌生长细菌(CGPB)的直接筛查。分离出四个新型CGPB菌株并在系统发育上鉴定出来:Rhodococcus sp。AF2108,Ancylobacter sp。 GA1226,Xanthobacter sp。 af2111和Shewanella sp。 OR151。 与最有效的CGPB菌株Rhodococcus sp。 af2108,在单一培养物中,蓝细菌细胞的叶绿素含量增加了8.5倍。 流式细胞仪分析显示,与犀牛Sp的共培养中,弹性链球菌细胞的数量增加了3.9倍。 AF2108。 这些结果归因于正向散射和叶绿素荧光强度的增加。 新的犀牛菌株似乎是迄今为止描述的最有效的CGPB之一。AF2108,Ancylobacter sp。GA1226,Xanthobacter sp。 af2111和Shewanella sp。 OR151。 与最有效的CGPB菌株Rhodococcus sp。 af2108,在单一培养物中,蓝细菌细胞的叶绿素含量增加了8.5倍。 流式细胞仪分析显示,与犀牛Sp的共培养中,弹性链球菌细胞的数量增加了3.9倍。 AF2108。 这些结果归因于正向散射和叶绿素荧光强度的增加。 新的犀牛菌株似乎是迄今为止描述的最有效的CGPB之一。GA1226,Xanthobacter sp。af2111和Shewanella sp。OR151。 与最有效的CGPB菌株Rhodococcus sp。 af2108,在单一培养物中,蓝细菌细胞的叶绿素含量增加了8.5倍。 流式细胞仪分析显示,与犀牛Sp的共培养中,弹性链球菌细胞的数量增加了3.9倍。 AF2108。 这些结果归因于正向散射和叶绿素荧光强度的增加。 新的犀牛菌株似乎是迄今为止描述的最有效的CGPB之一。OR151。与最有效的CGPB菌株Rhodococcus sp。af2108,在单一培养物中,蓝细菌细胞的叶绿素含量增加了8.5倍。流式细胞仪分析显示,与犀牛Sp的共培养中,弹性链球菌细胞的数量增加了3.9倍。AF2108。 这些结果归因于正向散射和叶绿素荧光强度的增加。 新的犀牛菌株似乎是迄今为止描述的最有效的CGPB之一。AF2108。这些结果归因于正向散射和叶绿素荧光强度的增加。新的犀牛菌株似乎是迄今为止描述的最有效的CGPB之一。
1。Araldi,R.P。等人,定期散布的短篇小说重复序列(CRISPR/CAS)工具的医疗应用:全面的概述。基因,2020年。745:p。 144636。2。Frangoul,H.,T.W。 ho和S. corbacioglu,CRISPR-Cas9基因编辑,用于镰状细胞疾病和β-杂质贫血。 回复。 n Engl J Med,2021。 384(23):p。 E91。 3。 groenen,P.M.A。等人,DNA多态性的性质,在分枝杆菌 - 链球菌的直接重复簇中 - 通过一种新型分型方法施用应变分化的应用。 分子微生物学,1993。 10(5):p。 1057-1065。 4。 Ishino,Y。等,IAP基因的核苷酸 - 序列,负责大肠杆菌中碱性磷酸酶同工酶的转化,以及基因产物的鉴定。 细菌学杂志,1987年。 169(12):p。 5429-5433。 5。 Chen,J.S。 和J.A. doudna,Cas9及其CRISPR同事的化学。 自然评论化学,2017年。 1(10)。 6。 Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Frangoul,H.,T.W。ho和S. corbacioglu,CRISPR-Cas9基因编辑,用于镰状细胞疾病和β-杂质贫血。回复。n Engl J Med,2021。384(23):p。 E91。3。groenen,P.M.A。等人,DNA多态性的性质,在分枝杆菌 - 链球菌的直接重复簇中 - 通过一种新型分型方法施用应变分化的应用。分子微生物学,1993。10(5):p。 1057-1065。4。Ishino,Y。等,IAP基因的核苷酸 - 序列,负责大肠杆菌中碱性磷酸酶同工酶的转化,以及基因产物的鉴定。细菌学杂志,1987年。169(12):p。 5429-5433。5。Chen,J.S。 和J.A. doudna,Cas9及其CRISPR同事的化学。 自然评论化学,2017年。 1(10)。 6。 Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Chen,J.S。和J.A.doudna,Cas9及其CRISPR同事的化学。自然评论化学,2017年。1(10)。6。Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Doudna,J.A。和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。科学,2014年。346(6213):p。 1077-+。7。Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。科学报告,2019年。9。8。tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。自然生物技术,2015年。9。33(2):p。 187-197。Wang,Y。等人,CRISPR系统的特异性分析揭示了脱靶基因编辑的大大增强。科学报告,2020年。10(1)。10。Zuccaro,M.V。等人,在人类胚胎中Cas9裂解后的等位基因特异性染色体去除。单元格,2020。183(6):p。 1650-+。11。Aschenbrenner,S。等人,将Cas9耦合到人工抑制域增强了CRISPR-CAS9目标特异性。科学进步,2020年。6(6)。12。Bondy-DeNomy,J。等人,抗Crispr蛋白抑制CRISPR-CAS的多种机制。自然,2015年。526(7571):p。 136-9。13。Khajanchi,N。和K. Saha,通过小分子调节进行体细胞基因组编辑,控制CRISPR。mol ther,2022。30(1):p。 17-31。14。Han,J。等人,对小分子药物的超敏反应。前疫苗,2022年。13:p。 1016730。15。Pettersson,M.和C.M. 机组人员,针对嵌合体的蛋白水解(Protacs) - 过去,现在和未来。 Div drug Discov Today Technol,2019年。 31:p。 15-27。 16。 Bondeson,D.P。 和C.M. 机组人员,小分子靶向蛋白质降解。 药理学和毒理学年度评论,第57卷,2017年。 57:p。 107-123。 17。 li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。 分子,2022。 27(24)。 18。Pettersson,M.和C.M.机组人员,针对嵌合体的蛋白水解(Protacs) - 过去,现在和未来。Div drug Discov Today Technol,2019年。31:p。 15-27。16。Bondeson,D.P。 和C.M. 机组人员,小分子靶向蛋白质降解。 药理学和毒理学年度评论,第57卷,2017年。 57:p。 107-123。 17。 li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。 分子,2022。 27(24)。 18。Bondeson,D.P。和C.M.机组人员,小分子靶向蛋白质降解。药理学和毒理学年度评论,第57卷,2017年。57:p。 107-123。17。li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。分子,2022。27(24)。18。Farasat,I。和H.M. SALIS,一种CRIS/CAS9活性的生物物理模型,用于基因组编辑和基因调节的合理设计。 PLOS Comput Biol,2016年。 12(1):p。 E1004724。Farasat,I。和H.M. SALIS,一种CRIS/CAS9活性的生物物理模型,用于基因组编辑和基因调节的合理设计。PLOS Comput Biol,2016年。12(1):p。 E1004724。
对于眼科,对于传统的基于被动扩散的药物干预,仍然存在许多不确定性和挑战。主要障碍之一是由复杂的玻璃体体和内部生物学大分子引起的有限渗透。在这里,我们第一次证明了新型TiO 2 @N-AU纳米线(NW)电动机/机车机器人由无线自然可见光诱导的动作可以自主,有效地通过光电粒的机制自动渗透到玻璃体体内。具有效率的推进,以及与玻璃体网络的空隙相匹配的NW电动机的纳米级尺寸,无创深入玻璃体体,并克服非均匀的非牛顿液(剪切薄和粘弹性)。我们设想了主动可见的轻型TIO 2 @N-AU NW电动机可容纳深眼病和无线生物电子药物的巨大应用前景。©2022 Elsevier Ltd.保留所有权利。
摘要 全基因组测序 (WGS) 和全外显子组测序 (WES) 在乳腺癌 (BC) 研究中至关重要。它们在检测易感基因、风险分层和识别罕见单核苷酸多态性 (SNP) 方面发挥着作用。这些技术有助于发现各种综合征与 BC 之间的关联,了解肿瘤微环境 (TME),甚至识别可能对未来个性化治疗有用的未知突变。基因分析可以发现 BC 的相关风险,并可用于肿瘤形成风险高的患者的早期筛查、诊断、特定治疗计划和预防。本文重点介绍 WES 和 WGS 的应用,以及如何发现与 BC 相关的新候选基因以帮助治疗和预防 BC。
抽象引入早期筛查和治疗可以通过在早期发现和解决眼病来降低失明的发生率。眼科医生机器人是一种自动化设备,可以同时捕获眼表和眼底图像,而无需眼科医生,因此非常适合初级应用。但是,设备筛选功能的准确性需要进一步验证。本研究旨在使用眼科医生机器人捕获的图像进行评估和比较眼科医生和深度学习模型的筛选精度,以确定一种既准确又具有成本效益的筛选方法。我们的发现可能会为远程眼筛的潜在应用提供宝贵的见解。方法和分析这是一项多中心的前瞻性研究,将招募来自3家医院的约1578名参与者。所有参与者将经历眼科机器人拍摄的眼表和眼底图像。此外,有695名参与者将用缝隙灯成像其眼表面。将收集来自门诊病历的相关信息。主要目的是通过接收器操作特征曲线分析,使用设备图像来评估眼科医生筛查对多种盲目引起的眼部疾病的准确性。靶向疾病包括角膜炎,角膜疤痕,白内障,糖尿病性视网膜病,与年龄相关的黄斑变性,青光眼视觉神经病和病理近视。次要目标是评估深度学习模型在疾病筛查中的准确性。此外,该研究的目的是比较眼科机器人机器人和缝隙灯在筛查角膜炎和角膜疤痕中使用Kappa测试之间的一致性。此外,将通过构建Markov模型来评估三种眼筛选方法的成本效益,基于非甲状化医学筛查,眼科医生 - 甲基甲基诊断和人工智能 - 甲基医疗筛查的成本效益。伦理和传播该研究已获得温州医科大学眼科和验光医院伦理委员会的批准(参考:2023-026 K-21-01)。这项工作将由同行评审出版物,国家和国际会议上的抽象演讲以及与其他研究人员共享的数据共享。
1. Araldi, RP 等人,成簇的规律间隔的短回文重复序列 (CRISPR/Cas) 工具的医学应用:全面概述。基因,2020 年。745:第 144636 页。2. Frangoul, H.、TW Ho 和 S. Corbacioglu,CRISPR-Cas9 基因编辑用于镰状细胞病和β-地中海贫血。回复。N Engl J Med,2021 年。384 (23):第 e91 页。3. Groenen, PMA 等人,结核分枝杆菌直接重复簇中 DNA 多态性的性质 - 一种新型分型方法在菌株区分中的应用。分子微生物学,1993 年。10 (5):第 1057-1065 页。 4. Ishino, Y. 等人,大肠杆菌中负责碱性磷酸酶同工酶转化的 Iap 基因的核苷酸序列及其基因产物的鉴定。细菌学杂志,1987 年。169 (12):第 5429-5433 页。5. Chen, JS 和 JA Doudna,Cas9 及其 CRISPR 同事的化学反应。自然评论化学,2017 年。1 (10)。6. Doudna, JA 和 E. Charpentier,使用 CRISPR-Cas9 进行基因组工程的新前沿。科学,2014 年。346 (6213):第 1077-+ 页。7. Whinn, KS 等人,核酸酶死亡 Cas9 是 DNA 复制的可编程障碍。科学报告,2019 年。9 月。8. Tsai, SQ 等人,GUIDE-seq 可对 CRISPR-Cas 核酸酶的脱靶切割进行全基因组分析。自然生物技术,2015 年。33 (2):第 187-197 页。9. Wang, Y. 等人,CRISPR 系统的特异性分析揭示了大大增强的脱靶基因编辑。科学报告,2020 年。10 (1)。10. Zuccaro, MV 等人,Cas9 切割人类胚胎后去除等位基因特异性染色体。细胞,2020 年。183 (6):第 1650-+ 页。11. Aschenbrenner, S. 等人,将 Cas9 与人工抑制结构域耦合可增强 CRISPR-Cas9 靶向特异性。 Science Advances,2020 年。6 (6)。12. Bondy-Denomy, J. 等人,抗 CRISPR 蛋白抑制 CRISPR-Cas 的多种机制。Nature,2015 年。526 (7571):第 136-9 页。13. Khajanchi, N. 和 K. Saha,通过小分子调控控制 CRISPR 进行体细胞基因组编辑。Mol Ther,2022 年。30 (1):第 17-31 页。14. Han, J. 等人,对小分子药物的超敏反应。Front Immunol,2022 年。13:第 1016730 页。15. Pettersson, M. 和 CM Crews,蛋白水解靶向嵌合体 (PROTAC) - 过去、现在和未来。 Drug Discov Today Technol,2019. 31:第 15-27 页。16. Bondeson, DP 和 CM Crews,小分子靶向蛋白质降解。Annual Review of Pharmacology and Toxicology,第 57 卷,2017 年。57:第 107-123 页。17. Li, R.,等人,蛋白水解靶向嵌合体 (PROTAC) 在癌症治疗中的应用:现在和未来。Molecules,2022 年。27 (24)。18. Farasat, I. 和 HM Salis,用于合理设计基因组编辑和基因调控的 CRISPR/Cas9 活性的生物物理模型。PLoS Comput Biol,2016 年。12 (1):第 e1004724 页。
摘要简介多学科团队(MDTS)是肿瘤管理不可或缺的,涉及专业的医疗保健专业人员,他们合作制定了针对患者的个性化治疗计划。但是,随着癌症护理的增长越来越复杂,MDT必须不断适应更好地满足患者需求。此范围审查将探索过去十年中MDT遇到的障碍和挑战;并提出优化其利用以克服这些障碍并改善患者护理的策略。方法和分析范围审查将遵循Arksey和O'Malley的框架,并从使用电子数据库(例如PubMed/Medline,Scopus和Psychinfo)中的文献搜索开始,涵盖了2013年1月至2022年12月的期限,并限于英语语言出版物。四个独立的审阅者将根据预定义的纳入标准筛选标题和摘要,然后对选定标题进行全文审查。也将研究出版物中引用的相关参考文献。将利用用于系统评价和荟萃分析的首选报告项目来说明方法。将提取,分析和分类来自选定出版物的数据以进行进一步分析。道德和传播范围审查的结果将为过去十年来肿瘤学MDT遇到的障碍和挑战提供全面的概述。这些发现将有助于现有文献,并提供有关需要改善MDT在肿瘤学管理中功能的领域的见解。结果将通过科学杂志的出版物进行传播,这将有助于与更广泛的医疗保健社区分享发现,并促进该领域的进一步研究和讨论。试用注册详细信息此范围审查的协议已注册为开放科学框架,可在DOI 10.17605/osf.io/r3y8u上获得。
和世界各地的学者都非常关注该主题。如今,通过多项初步研究证实了营养素的免疫促进性capabili关系[2-4]。Swiftlets的巢穴,被称为中文的“ Yanwo”,是可食用的。自过去16个世纪以来,它被视为一种前滋味滋补品。可食用的鸟巢(EBN),被称为“东方的鱼子酱”,具有前价格和出色的营养价值[5]。雄性Swiftlets的舌下唾液腺产生用于在繁殖Sea Son期间建造EBN的唾液[6]。Apodidae家族中的Swiftlet属于Aerodramus和Colocalia属[7]。数千年来,中国人将这种独特的食物补品用作传统中药(TCM),以其改善健康的特性而闻名。EBN具有多种健康益处,包括增强皮肤肤色,加固免疫系统,