摘要:索引值或所谓的n值预测对于理解超导体的行为至关重要,特别是需要对超导体建模时。此参数取决于几个物理量,包括温度,磁场的密度和方向,并影响由涂层导体制成的HTS设备的行为,从损失和淬火繁殖方面。在本文中,对许多用于估计N值的机器学习方法进行了全面分析。结果表明,级联向前神经网络(CFNN)在此范围内擅长。与其他尝试的模型相比,尽管需要较高的训练时间,但它的性能最高,具有0.48的均方根误差(RMSE)和99.72%的Pearson系数,具有拟合度(R-Squared)。另一方面,刚性回归方法的预测最差为4.92 RMSE和37.29%的R平方。此外,随机森林,增强方法和简单的馈电神经网络可以被视为比CFNN更快的训练时间的中间精度模型。这项研究的结果不仅提前对超导体进行了建模,而且还为应用程序的应用铺平了道路,并为机器学习插件代码进行了进一步研究,以进行超导研究,包括对超导设备进行建模。
调查措施,以避免干扰和智能接地溶液,以防止短距离。可以在电气系统中节省重量,例如通过分配一些电缆。为了支持电池电池领域的这些趋势,以及越来越多的数字化和小型化,Lohmann提供了量身定制的Adive解决方案和高精度剪切(图1)。多额外材料的范围包括胶带解决方案,可提供诸如阻尼,密封,绝缘和电导率以及有效的疗法管理等功能。这些胶带在改善电池性能,延长电池寿命并确保生产过程可靠和高效方面起着至关重要的作用。Lohmann专注于开发一个越来越可持续的价值链,该链涵盖了从粘合剂制造到内部转换的所有生产阶段。例如,公司的生产流程仅是绿色的电力,供应链尽可能短,位于Eupope中,并且根据客户的要求,可以生产无溶剂的贴纸范围。此外,Lohmann已经计算完整的
扫雷舰是一种使用声纳探测并摧毁水雷的军舰。任何被归类为“可能为水雷”的声纳回波都必须进行目视识别,以确保物体的性质。这种视觉识别是由配备摄像头的无人机(Poisson Auto Propulsé - PAP)或扫雷潜水员进行的。
摘要 - 评估了四个Rebco CC的物理和电气特性:1)theva; 2)上海超越。技术; 3)日本法拉第工厂; 4)藤库拉。为了估算其物理特性,通过删除粘贴在胶带上的聚酰亚胺色带并在预锡后切割胶带来检查每个胶带的分层强度。还通过我们的金属悬挂过程研究了其厚度的均匀性和厚度的均匀性。用于评估其电气性能,在垂直于AB平面的各种外部磁场下在4.2 K下测量其临界电流。在自田77 K的液体氮浴中制造每条胶带的关节样品。在本文中为四个磁带描述了结果。
在微电子领域,设备集成度更高、散热性能更好一直是个趋势。在制造基于陶瓷的微电子器件时,可以应用以下技术。厚膜混合技术使用烧结陶瓷基板(主要是 Al 2 O 3 ),用功能糊料进行丝网印刷,然后在 850°C 下烧制。氧化铝基板具有非常好的导热性(25 W/mK),但是只有两侧可以进行金属化。使用 LTCC 技术的多层系统可以实现更好的小型化。LTCC 器件通过丝网印刷、堆叠和层压陶瓷绿带,然后进行共烧来制造。LTCC 的缺点是由于其玻璃含量高而导致的低导热性(3 W/mK)。通过结合混合技术和 LTCC 技术,可以结合两种方法的优点,例如良好的导热性和高的多层集成度。由于通过热压将生带层压在烧结陶瓷基板上的故障率太高,因此冷低压层压 (CLPL) 已被用作替代层压工艺。CLPL 是一种层压方法,其中组件的连接是在室温下通过使用双面胶带施加非常低的压力 (<5 MPa) 进行的。在热处理过程中,粘合膜将胶带保持在一起,直到粘合剂完全分解;在进一步升温期间,胶带通过烧结连接在一起。本文介绍了将烧结材料与生带连接所使用的材料和加工步骤,并讨论了烧制过程中发生的影响。这些影响(如边缘卷曲和裂纹形成)主要是由于在受限烧结过程中发生的应力造成的。可以通过改变工艺参数来影响它们的控制。关键词:连接、层压、冷低压层压、LTCC、氧化铝基板
背景:研究了椭圆形管热交换器中纳米流体(NF)流动的热流性能,并用两个旋转磁带装配和涡轮。在先前的研究中,使用NF作为使用NF作为使用NF作为使用NF的旋转扭曲磁带作为使用NF的工作流体的问题较少。方法:考虑到在管状热量器中采用传热改善方法的重要性,请参见此处检查的被动和抗热传热改善方法。作为一种新型的研究案例,使用了水2 o 3 nf的旋转磁带;进行了灵敏度分析,以揭示纳米颗粒(ϕ),磁带旋转速度和重新数量对NU数字,泵浦功率和功绩数字(FOM)的影响。将5000 wm-2的热通量应用于壁表面,并采用了两相混合方法进行模拟。在具有三种不同旋转速度的固定和旋转扭曲磁带的情况下,研究了热交换器的性能。结果表明,在所有情况下,增加了RE数量,ϕ和旋转速度将增加NU数量和泵送功率。ϕ的增加将NU数字提高了6.1% - 19.4%,泵送功率提高了59.2 - 280%。在较低的RE数字下增加NU数量的变化较低,并且在高RE数字下变为较高。ϕ增量对传热的影响正在增加,但在旋转磁带而不是固定磁带和普通管子的情况下以更高的倾斜速率发生。增加RE数量会减少FOM,同时增加ϕ会改善它。在旋转扭曲的磁带模式的情况下,FOM的值始终大于一个,对于固定模式,FOM的值始终低于0.9。显着的发现:FOM的最高值为1.57,是最高的旋转速度,最低的RE数和ϕ = 1%。实践意义和应用的潜在领域:在热交换器设备中有效传热的需求不断增加,因此需要采用热传递增强技术。通过数值研究了扭曲磁带的效果,它们的旋转以及NF S在热交换器中的应用。
过电流循环是指对超导磁带/设备施加重复过电的过程,以表征其临界电流的降低。表征了稀土钡氧化铜(Rebco)磁带的过电流循环行为是高温超导(HTS)设备设计过程中的关键步骤。在HTS设备操作过程中,多起过电流事件可以显着降低总临界电流,从而导致潜在的淬火和故障。数据驱动的模型,以估计Rebco磁带的关键电流降解率(CCDR)在当前情况下。但是,在关键电流减少的估计中,这些方法在8%至11%的范围内表现出明显的误差。本文提出了基于人工智能(AI)技术的方法,该技术针对CCDR估计的常规方法的挑战。提出,测试了不同的基于AI的技术,并进行了比较,以显示提出的智能方法的有效性,包括支持向量回归(SVR),决策树(DT),径向基函数(RBF)和模糊推理系统(FIS)。对经过多个磁带的关键电流值进行了多个磁带的临界电流值,对当前周期进行了重复和重复性。结果表明,SVR方法的平均相对误差(MRE)为23%,对于DT模型约为0.61%,FIS模型的MRE远高于0.06%,RBF方法的MRE值约为1.1×10-6%。此外,提出的AI模型提供了快速测试时间,范围从1到11毫秒。这些发现强调了使用AI技术来增强与过电流事件相关的风险的估计准确性的潜力。
•易于制造 - 磁带提供即时键,无需固定时间。•耐用性 - 某些磁带迅速将边缘缠绕而不会撕裂,从而避免浪费和返工。合格的溶液可用于复杂的几何形状。•安全性 - 带有火焰的解决方案的磁带会议ul®94V-0标准。它们可以结合电绝缘成分,以提高介电强度。•热性能 - 胶带固有的薄度,对热流的阻力最小。
高效率和低能量损失的摘要,高温超导体(HTS)已经证明了它们在各种领域的深刻应用,例如医学成像,运输,加速器,微波设备和电力系统。HTS录像带的高领域应用增加了对超级导管制造中长度长度的具有长度长度的具有成本效益的磁带的需求。但是,由于制造过程中的不稳定生长条件,长HTS胶带的统一和增强性能是具有挑战性的。尽管证实了高级金属有机化学蒸气沉积(A-MOCVD)过程中的过程参数影响所产生的HTS磁带的均匀性,但高维过程参数信号及其复杂的相互作用使得很难制定有效的控制策略。在本文中,我们提出了一项本地措施,以实现HTS磁带的统一性,以便为我们的控制政策提供即时反馈。然后,我们将HTS磁带的制造建模为Markov决策过程(MDP),具有连续的状态和动作空间,以在我们的反馈控制模型中实时评估即时奖励。由于我们的MDP涉及连续和高维状态和动作空间,因此采用神经拟合的Q-介质(NFQ)算法来用人工神经网络(ANN)功能近似来求解MDP。过程参数的共线性可以限制我们调整过程参数的能力,这是我们方法中主要组件分析(PCA)解决的。控制策略使用NFQ算法调整了过程参数的PCA。基于我们对实际A-MOCVD数据集的案例研究,获得的控制策略将磁带的平均统一性提高了5.6%,并且在较低均匀性的样品HTS磁带上的表现尤其很好。
•安全:PSA磁带不需要特殊的危险材料处理协议。•组装优化:PSA提供几乎立即的绿色强度,并以微秒而不是数小时或几天测量的治愈时间。磁带在组装时也可以将零件固定在适当的位置。•一致性:PSA在应用时提供一致的厚度。每个电池组都来自组装,其粘合剂的粘合度与其他每个包装都相同。•多功能性:PSA磁带可以层压到泡沫,纤维和胶片,并模切为规格。粘合剂可以使用可增强其易用性(例如易于可移动性/重新定位性),长期耐用性和阻力性的特性进行设计。
