您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
本研究旨在评估克唑替尼对 ALK 阳性转移性肺癌患者的疗效。对患者的资料进行回顾性分析。采用 Cox 回归和 Kaplan-Meier 方法进行生存分析。共 25 名患者参与了该研究。13 名(52%)患者为男性,平均年龄为 55 岁(范围:30-80 岁)。23 名(92%)患者为新发转移性患者。32% 的患者出现脑转移,20% 的患者出现肝转移。克唑替尼治疗前,64% 的患者接受过化疗,20% 的患者接受过姑息放疗。无进展生存期为 16.8(CI 95%,5.7-27.9)个月。36% 的患者出现 1-2 级副作用,12% 的患者出现 3-4 级副作用。疾病进展后,13 名 (52%) 患者接受了第二系列 ALK 抑制剂(阿来替尼、色瑞替尼和劳拉替尼)或化疗。中位总生存期 (OS) 为 44.2(95% CI,28.5-59.9)个月。四年 OS 率为 37.4%。在多变量分析中,ALK 阳性率 (p=0.02) 被确定为影响 OS 的统计学显著因素。我们展示了克唑替尼对 ALK 突变转移性非小细胞肺癌患者的疗效数据。克唑替尼是一种有效且安全的治疗方法,适用于 ALK 突变转移性非小细胞肺癌患者。此外,我们发现 ALK 阳性率是 OS 的预后因素。
人类情感识别一直是心理物理学和计算机视觉的重要主题。但是,经常发布的数据集有许多局限性。进行检查,大多数数据集都包含仅包含有关面部表情的信息的框架。由于以前的数据集的局限性,很难理解影响人类识别的机制,或者在这些数据集中训练的计算机视觉模型上对人类的识别良好。在这项工作中,我们介绍了一个全新的大型数据集,基于视频的情感并影响上下文数据集(VEATIC)中的跟踪,可以征服先前数据集的限制。Veatic在好莱坞电影,纪录片和家庭视频中有124个视频片段,并通过实时注释进行了连续的价和唤醒评级。与数据集一起,我们采用了一项新的计算机视觉任务,以通过每个视频框架中的上下文和字符信息来推断所选字符的影响。此外,我们提出了一个简单的模型来基准这项新的计算机视觉任务。我们还使用数据集与其他类似数据集进行了预处理模型的性能。实验显示了通过VEATIC验证的模型的竞争结果,表明VEATIC的普遍性。我们的数据集可从https://veatic.github.io获得。
•1x公共警报(N/C或N/O)完全可编程•2x警报(N/O)完全可编程•扩展船只健康监控。•泄漏检测。•使用监视器和计数器。•Modbus RTU和BACNET通信协议通过RS485具有能力。•可以与FlamConnect远程服务结合使用。(请与Boss TM技术支持团队联系以获取详细信息)。•包含两个带有隔离阀的柔性软管,以便于安装。•易于使用壁挂式支架。•广泛的数据存储用于在线和离线分析。•先进的技术可确保最低的功耗,长时间的使用寿命和易于维护。•微处理器控制,自学习,带有图形显示。•获得专利的“干”断路箱,以保护军团菌。
摘要。分析建筑模型的可用面积、建筑安全性或能源分析需要空间和相关对象的功能分类数据。自动化空间功能分类有助于减少输入模型准备工作量和错误。现有的空间功能分类器使用空间特征向量或空间连通性图作为输入。深度学习 (DL) 图像分割方法在空间功能分类中的应用尚未被研究。作为解决这一差距的第一步,我们提出了一个数据集 SFS-A68,它由 68 个公寓楼空间布局的数字 3D 模型生成的输入和地面真实图像组成。该数据集适用于开发用于空间功能分割的 DL 模型。我们使用该数据集训练和评估基于迁移学习和从头开始训练的实验空间功能分割网络。测试结果证实了 DL 图像分割对空间功能分类的适用性。
我们对一项名为动力电池检测(PBD)的新任务进行了全面的研究,该任务旨在从 X 射线图像中定位密集的阴极和阳极板端点,以评估动力电池的质量。现有制造商通常依靠人眼观察来完成 PBD,这使得很难平衡检测的准确性和效率。为了解决这个问题并让更多人关注这个有意义的任务,我们首先精心收集了一个称为 X 射线 PBD 的数据集,该数据集包含从 5 家制造商的数千个动力电池中选择的 1,500 张不同的 X 射线图像,具有 7 种不同的视觉干扰。然后,我们提出了一种基于分割的新型 PBD 解决方案,称为多维协作网络(MDCNet)。借助线和计数预测器,可以在语义和细节方面改进点分割分支的表示。此外,我们设计了一种有效的距离自适应掩模生成策略,可以缓解由板分布密度不一致引起的视觉挑战,从而为 MDCNet 提供稳定的监督。无需任何花哨的修饰,我们基于分割的 MDCNet 始终优于其他各种角点检测、人群计数和基于一般/微小物体检测的解决方案,使其成为有助于促进 PBD 未来研究的强大基础。最后,我们分享了一些潜在的困难和未来研究的工作。源代码和数据集将在 X-ray PBD 上公开提供。
摘要:通过控制子波长量表中的光场,Metasurfaces实现了小型化和频谱成像系统整合的新方法。元整形支持连续体(Quasi-BICS)中的准结合状态可以通过更改结构参数来控制质量因子和光谱响应。在这项工作中,我们提出了一个超紧凑的多光谱成像设备,从而通过支持准BIC的元原子阵列来实现光谱调制。设计的元原子阵列可以在各种波长上充当过滤器,从而使设备能够具有较大的操作范围和具有良好光谱分辨率的高保真光谱重建。由BIC MetaSurfaces组成的微光谱仪也可以用作成像像素来通过定期布置实现计算成像光谱,从而成功地在不同的通道中成功解析了具有空间别名的图像。此光谱仪设备可以以低成本以快速对象识别和适当的空间光谱分辨率来满足市场需求。
摘要 4 AM 和 0.5 AM 钒 (V) [V(V),钒酸盐] 分别完全抑制了脱膜海胆精子鞭毛和用 0.1 mM ATP 重新激活的胚胎纤毛的运动能力。0.5-1 AM V(V) 可抑制潜伏形式的动力蛋白 1 的 Mg2+ 激活 ATPase 活性 (ATP 磷酸水解酶,EC 3.6.1.3) 50%,而 Ca2+ 激活 ATPase 活性则不那么敏感。V(V) 对鞭毛摆动频率和动力蛋白 1 ATPase 活性的抑制似乎不是与 ATP 竞争的。与其他报告一致的是,V(V) 对 (NaK)ATPase 的抑制在 ATP 存在下起效较慢,而在 ATP 不存在下起效相对较快。然而,对于动力蛋白,无论是否存在 ATP,抑制都会以快速的速度发生。浓度为 1 mM 的儿茶酚可逆转 V(V) 对重新激活的精子运动、动力蛋白 ATPase 和 (NaK)ATPase 的抑制。浓度高达 500 AM 的 V(V) 对肌球蛋白和肌动球蛋白 ATPase 均无抑制作用。V(V) 的抑制提供了一种可能的技术,用于区分动力蛋白和肌球蛋白在不同形式的细胞运动中的作用。
文本到图像模型近年来已显示出进展。随着这一进展,从文本中生成向量图也已提出。svg是向量图形的流行效果,SVG代表带有XML文本的场景。因此,大型语言模型可以直接处理SVG代码。考虑到这一点,我们专注于使用LLMS编辑SVG。用于定量评估LLMS编辑SVG的能力,我们提出了SVGeditBench。svgeditBench是评估LLMS编辑SVG代码能力的基准。在提议的基准下进行评估时,我们还显示了GPT-4和GPT-3.5结果。在实验中,GPT-4在定量和质量上都显示出与GPT-3.5的优势。该数据集可在https://github.com/mti-lab/svgeditBench上找到。
乳腺癌是女性死亡的主要原因。在治疗这种疾病方面已取得了巨大进步,芳香酶抑制剂(AIS)已被认为是基石。它们的特征是高效率和低毒性。作者回顾了可用文献和定义的状态AI管理。这项研究旨在帮助临床医生在日常临床实践中同样权衡患者的需求和疾病控制率的需求。今天,AIS在治疗激素受体阳性乳腺癌中起着核心作用。 在这项研究中,专家小组回顾了有关AIS使用的文献,讨论了它们在乳腺癌的各个方面的使用,从乳腺癌前和绝经后早期乳腺癌到转移性乳腺癌,以及其有关效率和毒性的管理。 鉴于在改善日常临床实践中的生存方面取得的出色结果,临床医生需要解决他们对治疗持续时间的担忧以及对骨骼健康,心血管系统和代谢的不利影响。 目前,除了癌症治疗外,患者的参与对于改善依从性和支持患者的生活质量至关重要,尤其是在选定的患者中,例如接受扩展辅助疗法或与靶向疗法结合的患者。 对现代技术的描述提供了为这一重要目标做出贡献的描述。今天,AIS在治疗激素受体阳性乳腺癌中起着核心作用。在这项研究中,专家小组回顾了有关AIS使用的文献,讨论了它们在乳腺癌的各个方面的使用,从乳腺癌前和绝经后早期乳腺癌到转移性乳腺癌,以及其有关效率和毒性的管理。鉴于在改善日常临床实践中的生存方面取得的出色结果,临床医生需要解决他们对治疗持续时间的担忧以及对骨骼健康,心血管系统和代谢的不利影响。目前,除了癌症治疗外,患者的参与对于改善依从性和支持患者的生活质量至关重要,尤其是在选定的患者中,例如接受扩展辅助疗法或与靶向疗法结合的患者。对现代技术的描述提供了为这一重要目标做出贡献的描述。
