摘要 - 在本文中,我们指出,基于卷积神经网络(CNN)基于变压器的检测器之间的基本差异,这些检测器在基于变压器的方法中导致小对象的性能较差,是局部信息与全局依赖性在特征提取和传播中的差距。为了使这些差异打扮,我们提出了一种新的视觉变速器,称为Hybrid Network Transformer(Hyneter),此前表明差距导致基于CNN的基于CNN的方法和基于变压器的方法,以增加尺寸不同的对象的结果。不同于以前方法中的分裂策略,Hyneters由混合网络骨干(HNB)和双切换(DS)模块组成,这些模块集成了本地信息和全局,并同时转移它们。基于平衡策略,HNB通过将卷积层嵌入并联中的变压器块中扩展了局部信息的范围,并且DS调整了对斑块外部全局依赖性的过度依赖。消融研究表明,Hyneters通过 + 2的巨大边缘实现了最先进的表现。1〜13。2 AP在可可和 + 3上。 1〜6。 5 miou在visdrone上具有较轻的型号大小和对象检测的计算成本较低。 此外,Hyneters在多个计算机视觉任务上实现了最新的结果,例如对象检测(60。 1 AP在可可和46上。 1 AP在Visdrone上),语义segmentation(54。 3 AP上的ADE20K)和实例分段(48。 可可上的5个ap掩码),并超过以前的最佳方法。2 AP在可可和 + 3上。1〜6。5 miou在visdrone上具有较轻的型号大小和对象检测的计算成本较低。此外,Hyneters在多个计算机视觉任务上实现了最新的结果,例如对象检测(60。1 AP在可可和46上。1 AP在Visdrone上),语义segmentation(54。3 AP上的ADE20K)和实例分段(48。可可上的5个ap掩码),并超过以前的最佳方法。该代码将在以后公开可用。
摘要 - 由于计算机视觉的最新进展,视觉模仿学习在学习一小部分视觉观察中学习的单人操纵任务方面取得了令人印象深刻的进步。然而,从双人视觉演示中学习双人协调策略和复杂的对象关系,并将其推广到新颖的混乱场景中的分类对象仍然是尚未解决的挑战。在本文中,我们将以前的有关基于关键的视觉模仿学习(K-VIL)[1]的工作扩展到了双人操作任务。拟议的BI-KVIL共同提取对象和手,双人协调策略以及子符号任务代表的所谓混合主奴隶关系(HMSR)。我们的双人任务表示形式是以对象为中心的,无独立的和视点为主的,因此可以很好地归因于新颖场景中的分类对象。我们在各种现实世界中评估了我们的方法,展示了其从少数人类演示视频中学习细粒度的双人操作任务的能力。视频和源代码可从https://sites.google.com/view/bi-kvil获得。
8.0 m/s类型:80TXL/音高:0.325“/量规:1.1 mm(0.043”)导杆长度:150 mm(6“)55 ml(1.9盎司)切割木材:4.6 m/s²切割木材:1.5 m/s²81db(a)89 db(a)89 db(a)89 db(a)3 db(a)3 db(a)3 db(a)474 474 x 95 x.(a)474 x.(a)474 x.(a)474 x.(a)474 x 95 x(A) 3-3/4 x 10“)BL4025指南杆,锯链2.1-2.4 kg(4.6-5.3磅)BL4020 -BL4040指南杆,锯链,链条油
允许免费复制或复印本作品的全部或部分用于个人或课堂用途,但不得为了盈利或商业利益而复制或分发,且复制品必须在首页注明此声明和完整引文。必须尊重 ACM 以外的人拥有的本作品组成部分的版权。允许摘要并注明出处。若要以其他方式复制、重新发布、发布到服务器或重新分发到列表,则需要事先获得特定许可和/或支付费用。请向 permissions@acm.org 申请许可。CHI '21,2021 年 5 月 8 日至 13 日,日本横滨 © 2021 计算机协会。ACM ISBN 978-1-4503-8096-6/21/05...$15.00 https://doi.org/10.1145/3411764.3445283
摘要:创造力是一个复杂的过程,已在不同领域进行了研究,在任务类型、背景和评估方法方面具有高度的多样性。在本研究中,我们专注于定义不明确的个人创造性问题解决 (CPS) 任务,目的是创建一个基于 CPS 调节过程的计算模型,该模型受到相关认知过程和人工认知架构的神经科学知识的启发。模型操作化考虑了学习者在解决定义不明确的任务时所采用的路径的突发特性以及该路径在描述任务的问题空间内的几何化。然后根据创造力背后的计算过程区分基于刺激和目标导向的创造性行为。通过计算和神经教育方法,该研究引入了创造性问题解决任务的模型,并提供了问题解决任务的操作几何定义,强调了与定义不明确的问题相关的挑战。我们完成了关于创造力作为一种语义基础过程的讨论,重点是数据表示,以及使用推理和度量空间算法进行符号数据操作。
摘要:计算机视觉是医疗保健应用的强大工具,因为它可以提供客观的病理诊断和评估,而不依赖于临床医生的技能和经验。它还可以帮助加快人口筛查,降低医疗保健成本并提高服务质量。一些研究总结了医学成像中的应用和系统,而很少有研究致力于调查使用环境智能(即在自然环境中观察个人)实现医疗保健目标的方法。此外,缺乏对儿童健康计算机视觉应用进行详尽调查的论文,这是一个特别具有挑战性的研究领域,因为大多数现有的计算机视觉技术仅针对成人进行训练和测试。本文的目的是首次在文献中调查使用依赖计算机视觉的环境智能方法和系统解决儿童健康相关问题的论文。
自适应自动驾驶汽车进行的抽象搜索操作多年来一直是引起人们极大兴趣的话题。此类操作需要精心安排的多个车辆的安排协调,这些车辆在感兴趣的地区执行搜索任务。由于海事环境的固有不确定性,如果车辆具有重要的能力以适应其任务以实时匹配其检测到的环境,则可能无法保持最初计划的搜索时间表。我们提出了一种多车自适应算法,用于动态评估和弹性重新规划在海上环境中常见的可变长度任务。在自适应评估和重新规划问题中,最初计划通过自适应,自主搜索工具执行一组任务。任务根据先验知识和预期的结果在预定的时间表下分配给搜索车辆。由于车辆对环境或目标姿势等原位条件的自主性和反应性,因此每个任务所需的精确持续时间和行动尚不清楚。我们开发了一个隐藏的马尔可夫模型(HMM),用于传播任务估计,并加上基于二次编程的弹性重新安排机。结果是一种集成的估计和安排适应方案,该方案迅速,有效地基于原位观察结果重新计划了车辆的时间表。数值模拟结果表明,与现有方法相比,这种新颖的HMM方法可避免的时间表变化超过两倍。
子公司:法国VISCOM,法国巴黎,法国VISCOM TUNISIE S.A.R.L.,突尼斯,突尼斯,突尼斯VISCOM INC.,亚特兰大,乔治亚州乔治亚州,美国Viscom Machine Pte Ltd.,新加坡VISCOM中国VISCOM机器视觉(印度)Pvt。Ltd.,印度班加罗尔
摘要 — 脑机接口 (BCI) 用于识别人类的状态和意图,实现人与设备之间的通信。使用脑电图 (EEG) 信号进行人与无人机之间的通信是 BCI 领域最具挑战性的问题之一。特别是,与无人机控制相比,无人机群的控制(方向和编队)具有更多优势。视觉意象 (VI) 范式是受试者在视觉上想象特定的物体或场景。减少受试者 EEG 信号之间的变异性对于基于 BCI 的实际系统至关重要。在本研究中,我们提出了子纪元特征编码器 (SEFE),以通过使用 VI 数据集来提高与受试者无关的任务的性能。本研究是首次尝试展示基于 VI 的 BCI 中受试者之间泛化的可能性。我们使用留一交叉验证来评估性能。包含我们提出的模块比排除我们提出的模块时获得更高的性能。在六种不同的解码模型中,带有 SEFE 的 DeepConvNet 表现出最高的 0.72 性能。因此,我们证明了使用我们提出的模块在与主题无关的任务中解码 VI 数据集并具有稳健性能的可行性。
摘要 — 部署在北极苔原 (AT) 等资源匮乏环境中的信息物理系统面临极端条件。部署在这种环境中的节点必须谨慎管理有限的能源预算,迫使它们交替进行长时间的睡眠和短暂的正常运行时间。在正常运行时间内,节点可以通过向其他节点提供服务来协作进行数据交换或计算。在节点上部署或更新此类服务需要协调以防止故障(例如,发送新的/更新的 API、等待服务激活/停用等)。在正常运行时间较短的 CPS 中,由于通信机会较少,这种协调可能会耗能。本文根据不同的 CPS 配置(即节点数量、正常运行时间长度、无线电技术或中继节点可用性)评估和研究节点在部署或更新任务协调期间的能耗。结果表明,在节点专门唤醒以进行部署/更新的情况下,能耗较高。结果表明,在与现有正常运行时间重叠(即保留用于观察活动)的同时执行适应任务是有益的。本文还评估和研究了节点的正常运行时间和中继节点可用性如何影响能耗。增加正常运行时间可以减少能耗,最高可达 12%。使用可用的中继节点进行通信可将能耗降低 47% 至 99%。索引术语 —CPS、部署、更新、协调、Tundra、能耗