此加州社区学校合作计划 (CCSPP) 实施计划模板由州社区学校转型援助中心 (S-TAC) 与加州教育部 (CDE) 合作创建。此模板旨在支持实施申请人提交实施计划(每个站点)作为其申请请求的一部分,并更广泛地支持 CCSPP 受助者实施社区学校。它应被视为一份动态文档,定期更新以反映您的社区学校的进展和需求、立法更新以及由您的持续改进和学校社区参与流程所形成的课程修正。整个模板都引用了地方教育机构 (LEA),以鼓励 LEA 和站点在实施 CCSPP 方面进行合作。
近年来,靶向治疗和免疫治疗已成为非小细胞肺癌(NSCLC)的有效治疗手段。随着诊疗技术的飞速发展和新药的不断研发,NSCLC的精准医疗已进入新纪元。这对于携带常见EGFR基因突变的NSCLC患者来说是一个重大突破,靶向药物的应用显著提高了生存率。然而,有一类罕见的基因突变被称为EGFR外显子20插入(ex20ins)突变,其结构不同于常规的EGFR基因突变,即外显子19缺失突变(19-Del)和外显子21点突变。由于其结构特点不同,携带这些EGFR ex20ins突变的患者对传统的酪氨酸激酶抑制剂(TKI)疗法没有反应,这部分患者不属于其适用范围。然而,激活的 A763_Y764insFQEA 突变引起的反应比紧随其后的 C 螺旋近区和远区的突变更明显,因此应区别对待。目前,缺乏针对 EGFR ex20ins 突变 NSCLC 的有效治疗方法。化疗的疗效相对较好,而由于临床数据不足,免疫疗法的疗效仍不明确。此外,第一代和第二代靶向药物的疗效仍然有限。然而,第三代和新型靶向药物已被证明是有效的。虽然新型 EGFR-TKI 有望治疗 NSCLC 患者的 EGFR ex20ins 突变,但它们面临着许多挑战。本综述主要关注针对 EGFR ex20ins 的 NSCLC 的新兴疗法,并强调正在进行的主要临床试验,同时概述该领域的相关挑战和研究进展。
据估计,科罗拉多州有超过 50 万人经历过脑损伤。不幸的是,脑损伤在弱势群体中的比例过高,例如青少年和刑事司法、人际暴力受害者和无家可归者。此外,虽然女性遭受脑损伤的可能性低于男性,但她们更容易受到脑损伤的影响,并且会遭受更糟糕的长期后果。在袭击期间遭受创伤性脑损伤的亲密伴侣暴力幸存者更有可能被诊断出患有创伤后应激障碍、失眠症,并且总体健康状况较差。美国有超过 530 万人患有永久性脑损伤相关残疾。经历脑损伤的儿童和青少年
1 由于本裁决包含对此案所采取行动的合理解释,因此必须向公众开放,并将根据 2002 年《电子政务法》发布在美国联邦索赔法院网站和/或 https://www.govinfo.gov/app/collection/uscourts/national/cofc 上。44 USC § 3501 note (2018)(电子政务服务的联邦管理和促进)。这意味着任何能访问互联网的人都可以看到该裁决。根据疫苗规则 18(b),请愿人有 14 天的时间来识别和删除医疗或其他信息,这些信息的披露将构成不必要的侵犯隐私权。如果经审查,我同意所识别的材料符合此定义,我将删除此类材料,使其不再向公众开放。2 1986 年《国家儿童疫苗伤害法案》,Pub. L. No. 99-660, 100 Stat. 3755. 此后,为方便引用,所有对《疫苗法案》的引用均指 42 USC § 300aa (2018) 的相关子段落。
近年来,随着硬件和软件技术的进步,高性能计算取得了长足的发展。计算机的性能按照摩尔定律不断提高,但似乎在不久的将来就会达到极限。量子计算机有可能大大超越经典计算机的性能,因此成为研究的焦点。本研究从理论角度和模拟实现两个方面探讨了经典随机游动与量子游动的区别,并探讨了量子游动在未来的适用性。概述了经典随机游动和量子游动的基本理论,并根据经典随机游动和量子游动的行为和概率分布,比较了它们之间的特征差异。同时,我们使用Qiskit作为量子模拟器实现了量子行走。表示量子行走的量子电路主要由硬币算子、移位算子和量子测量三部分组成。硬币算子表示量子行走中的抛硬币,这里我们使用了Hadamard算子。移位算子表示根据硬币算子的结果进行量子行走的移动。量子测量是提取量子比特的量子态的过程。在一维量子行走中,我们准备了四种情况,作为从两个到五个量子比特位置的量子比特数的差异。在所有情况下,都已看到量子行走的成功实现,这与量子比特的数量和初始状态的差异有关。然后,我们广泛研究了二维量子行走的实现。在二维量子行走中,就每个 x 和 y 坐标位置的量子比特数量而言,准备了三种情况,从两个到四个量子比特。虽然与一维情况相比,问题设置的复杂性大大增加,但可以看出量子行走实现的成功。我们还看到,量子行走的行为和概率分布的扩展在很大程度上取决于初始硬币状态和初始位置的初始条件。本研究证明了量子行走作为解决未来广泛应用中复杂问题的工具的适用性。最后,我们给出了本研究的可能观点和未来展望。
2 拟建设施位置的完整法律描述,包括标明拟建设施位置、县界和州界的区域设施地图,或任何适当比例尺的此类地图的参考。法律描述和区域设施地图见附件 2。 3 拟建设施的建设或运营将受影响或必须使用的任何自然或不可再生资源的描述,包括任何缓解、争议、问题或关注领域的声明。见附件 3。 4 如果已开始任何 PUC 和 FERC 备案,则提供 PUC 和 FERC 档案摘要。见附件 4。 5 内华达州设施业务计划的副本。见附件 5。
2021 年末,我们被迫接种新冠疫苗,才能保住工作。我当时不想接种疫苗,因为我觉得疫苗接种过程仓促,而且没有证据证明疫苗可以预防新冠。由于没有政府部门愿意听取我的担忧,医生害怕不遵守他们的指示,我感到困惑和失望,质疑这个国家的民主。我觉得自己被勒索接种疫苗以保住我做了 30 年的工作,所以我勉强去接种了一剂辉瑞疫苗。接种疫苗后大约 7 小时,当我看电视时,一股寒意袭来。我的皮肤开始刺痛,我的心跳开始非常快。我的皮肤变得出汗和寒冷。我感到一阵焦虑袭来,所以我给医院打了电话。我被要求去急诊室。一到那里,我就被立即看病。我不得不接受血液检查和心脏监测大约 4 个小时,然后才被解雇。回家后,我反复发作心悸、出汗、皮肤冰冷和一阵阵令人恐惧的焦虑,持续了一周多。我感到非常害怕和孤独,但医疗界似乎没有人关心。他们告诉我要接种第二剂疫苗,并告诉我我所经历的一切都“正常”。我不敢相信这些医疗专业人士竟然认为这些症状是正常的。正常的不是这种感觉。
与经典电子不同,量子态以难以测量而著称。从某种意义上说,电子的自旋只能处于两种状态之一,即向上或向下。通过简单的实验可以发现电子处于哪种状态,对同一电子的进一步测量将始终证实这一答案。然而,这幅图景的简单性掩盖了电子复杂而完整的本质,电子总是处于两种状态之一,而状态会根据测量方式而变化。量子态断层扫描是一种使用许多相同粒子的集合来完全表征任何量子系统(包括电子自旋)的过程。多种类型的测量可以从不同的特征基重建量子态,就像经典断层扫描可以通过从不同的物理方向扫描三维物体来对其进行成像一样。在任何单一基础上进行额外的测量都会使该维度更加清晰。本文主要分为两部分:层析成像理论(第一部分和第二部分)和光子系统的实验层析成像
现有的管理高级人工智能系统风险的策略通常侧重于影响开发哪些人工智能系统以及它们如何传播。然而,随着高级人工智能开发者数量的增长,这种方法变得越来越不可行,并且会阻碍有益的用例和有害的用例。作为回应,我们敦促采取一种补充方法:提高社会对高级人工智能的适应性,即减少给定人工智能能力在给定水平的传播所带来的预期负面影响。我们引入了一个概念框架,该框架有助于识别避免、防御和补救人工智能系统潜在有害用途的自适应干预措施,并以选举操纵、网络恐怖主义和人工智能决策者失去控制权为例进行了说明。我们讨论了社会可以实施的适应人工智能的三步循环。提高社会实施这一循环的能力可以增强其对高级人工智能的抵御能力。我们最后向政府、行业和第三方提出了具体的建议。
