烟酰胺腺嘌呤二核苷酸(NAD)在许多模型生物体中所证明的,在大脑的昼夜节昼夜时钟(SCN,SCN)中起着核心作用。nAD充当酶的副因素和底物,发现其调节受到周期性的严格调节。然而,在人脑中,昼夜节律(CR)对SCN和其他大脑区域的代谢的影响知之甚少。我们在高磁场进行了磁共振光谱(MRS)研究,测量了25名健康参与者的两个不同的早晨和下午昼夜状态的枕骨NAD水平和其他代谢产物。唾液皮质醇水平确定确定实验是在两个年代不同的生理条件下进行的,并对冒险倾向进行了行为测试。总体而言,我们发现CR并未显着影响枕骨大脑区域的NAD水平。除牛磺酸外,包括乳酸在内的其他脑代谢产物,包括乳酸,也不受到CR的显着影响。CR确实影响了冒险行为和唾液皮质醇水平,并确定参与者在早晨和下午处于昼夜节律不同的行为和生理状态。测量其他大脑区域中NAD和牛磺酸水平的CR效应可能会提供更强的影响。测量其他大脑区域中NAD和牛磺酸水平的CR效应可能会提供更强的影响。
粪便微生物移植(FMT)为治疗溃疡性结肠炎(UC)提供了希望,尽管治疗失败的机制尚不清楚。这项研究利用了纵向收集的结肠活检(n = 38)和粪便样本(n = 179),来自19名患有轻度至中度UC的成年人接受串行FMT,其中抗菌预处理和递送模式(capsules versus versus versus versus versus versus versus versus versus versus versus versus versus sorge均可评估临床响应(从临床上降低)。结肠活检进行了双RNA-Seq;粪便样品接受了平行的16S rRNA和shot弹枪元基因组测序以及未靶向的代谢组分分析。与反应性(R)患者相比,无反应性(NR)患者的结肠粘膜(NR)患者的结肠粘膜(NR)患者的结肠粘膜增加了细菌的负担,包括细菌的负担增加,这些细菌表达了更多的抗菌耐药性基因。NR患者还表现出先天免疫抗菌反应基因的粘膜表达。FMT,NR和R粪便微生物组和代谢组表现出明显的差异。NR代谢组具有升高的免疫刺激化合物,包括鞘磷脂,溶血磷脂和牛磺酸。nr粪便微生物组富含菌丝脆弱的菌丝和细菌剂盐菌株,这些菌株编码了能够生产牛磺酸的基因。这些发现表明,有效的粘膜微生物清除率和重新引入细菌,使腔内代谢与FMT成功相关,以及持续的粘膜粘膜和粪便抗菌细菌菌种物种可能会导致FMT失败。
目前,自闭症诊断没有可靠的生物标志物。自闭症的异质性和几个共同存在的条件是建立这些疾病的关键挑战。在这里,我们使用了基于质谱的未靶向尿液代谢组学来研究自闭症诊断的代谢差异和自闭症的双胞胎队列中的自闭症特征(n = 105)。我们在双胞胎的尿液样本中鉴定了208个代谢产物。在控制其他神经脱发状况时,未检测到自闭症诊断的明确代谢驱动因素。但是,我们确定了几种代谢产物的名义重大变化。例如,在自闭症组中,苯基丙酮酸(P = 0.019)和牛磺酸(P = 0.032)升高,而肉碱(P = 0.047)降低。我们还解释了共享因素,例如双对中的遗传学,并报告其他代谢物差异。基于自闭症诊断的名义显着代谢产物,富含九种和脯氨酸代谢途径(p = 0.024)。通过社会响应量表第二版和代谢物差异衡量,我们还研究了定量自闭症性状之间的关联,并确定了更多名义上有特殊的代谢物和途径。在双对中观察到吲哚-3-actate和自闭症性状之间的显着正相关(调整后的P = 0.031)。因此,尿液生物标志物在自闭症中的效用尚不清楚,来自不同研究人群的混合发现。
naringin是一种主要在柑橘类水果中发现的天然黄酮,由于其公认的抗氧化,抗炎和心脏保护属性,人们引起了人们的注意。但是,纳林蛋白在调节能量消耗中的功能知之甚少。在本研究中,我们观察到补充十二周的纳林蛋白补充剂基本上重塑了高脂饮食(HFD)喂养小鼠的代谢特征,通过抑制体重增加,减轻肝脏体重和改变身体成分。值得注意的是,Naringin通过增强棕色脂肪组织(BAT)(BAT)和刺激腹股沟白色脂肪组织(IWAT)刺激褐变的肉基因活性来增强测试小鼠的全身能量消耗的能力。此外,我们的结果表明,补充纳林蛋白改变了肠道菌群的组成,SPE逐渐增加了双歧杆菌和lachnospiraceae_bacterium_28-4,同时减少了lachnospiraceae_bacacterium_baccetterium_bactterium_bacterium_bacterium_bacterium_bacterium_bacterium_dww59 and dubosecress_n。随后,我们还发现,补充纳尔·英丁(Nar Ingin)通过显着促进牛磺酸,酪醇和胸腺的产生,改变了粪便代谢物谱,它们充当热量调节的有效活化剂。有趣的是,纳林蛋白的代谢作用通过抗生素干预消除了肠道菌群消耗,同时导致纳林蛋白诱导的热生成的消失以及对饮食诱导的肥胖症的保护作用。这一发现揭示了肠道细菌和脂肪组织之间的新型食物驱动的横截面通信。collective,我们的数据表明,补充纳林蛋白会刺激蝙蝠的热发生,改变脂肪分布,促进褐变过程,从而抑制体重增加。重要的是,这些代谢作用需要肠道细菌的参与。
摘要 结直肠癌 (CRC) 是全球癌症死亡的主要原因之一,而转移是 CRC 相关死亡的主要原因。转化生长因子-β (TGF- β) 不仅在调节正常结肠中起着重要作用,而且在 CRC 的发展和转移中也起着重要作用。然而,TGF- β 不被认为是理想的治疗靶点,因为它根据肿瘤阶段表现出促肿瘤发生和抗肿瘤发生的活性。因此,找到可以靶向损害 CRC 转移的 TGF- β 下游信号传导成分非常重要。在这里,我们表明 TGF- β 促进 CRC 迁移并上调长链非编码 RNA 牛磺酸上调基因 1 (TUG1) 的表达。TUG1 敲低抑制了体外 CRC 细胞的迁移、侵袭和上皮 - 间质转化 (EMT),并降低了体内 CRC 肺转移。 TGF- β 诱导转移,而 TUG1 敲低则抑制了这种作用。此外,TGF- β 不能逆转 TUG1 敲低的抗转移作用。这些数据表明 TUG1 是 TGF- β 的下游分子。此外,TWIST1 表达随着 TGF- β 处理而增加,而 TUG1 敲低则降低了 CRC 细胞中的 TWIST1 表达。TWIST1 敲低抑制了 CRC 细胞的侵袭和 EMT;这些作用不受同时敲低 TUG1 的影响,表明 TWIST1 是 TUG1 的下游介质。此外,TUG1 在 CRC 患者中显著过表达。总之,TGF- β 通过 TUG1/TWIST1/EMT 信号通路促进 CRC 转移。TUG1 可能是抑制 TGF- β 通路激活治疗 CRC 的一个有希望的药物靶点。
基因型插补是遗传学领域中使用的标准方法。它可用于填充缺失的基因型或增加基因型密度。下游分析需要精确的估算基因型。在这项研究中,使用两种不同的参考面板,一个内部的参考人群和多种繁殖参考人群来检查全基因组序列插定的精确性。通过将介质密度(50K)基因型归纳为高密度,然后归因于整个基因组序列(WGS)来进行逐步插补。参考人群由1000个公牛基因组项目的WGS信息组成。繁殖参考面板包含396个Angus牛,而多品种参考方案的参考人群则将另外2 380个牛磺酸牛添加到参考人群中。插补精度是从10倍交叉验证的变异平均精度,并表示为一致率(CR)和Pearson的相关性(PR)。这两个插补场景实现了CR的中度至高插补精度,CR为0.896至0.966,而PR的准确精度为0.779至0.834。来自两个不同场景的准确性相似,除了WGS归因的PR,在该场景中,繁殖场景的表现优于多种品种方案。结果表明,包括参考面板中其他品种的大量动物以纯化的安格斯没有提高准确性,并可能对结果产生负面影响。2024作者。由Elsevier B.V.代表动物财团出版。总而言之,可以使用繁殖参考面板以很高的精度获得Angus牛中的WGS。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
母体免疫失调是自闭症谱系障碍 (ASD) 的产前风险因素。重要的是,炎症和代谢压力之间存在临床相关联系,可导致异常的细胞因子信号传导和自身免疫。在这项研究中,我们研究了母体自身抗体 (aAbs) 破坏代谢信号传导并诱导暴露后代大脑神经解剖学变化的可能性。为此,我们根据母体自身抗体相关 ASD (MAR-ASD) 的临床现象开发了大鼠母体 aAb 暴露模型。在确认大鼠母体产生 aAb 并将抗原特异性免疫球蛋白 G (IgG) 转移到后代后,我们纵向评估了后代行为和大脑结构。当允许 MAR-ASD 大鼠后代与新伴侣自由互动时,幼崽超声波发声减少,社交游戏行为明显减少。此外,在另一组动物中,在出生后第 30 天 (PND30) 和 PND70 天进行的纵向体内结构磁共振成像 (sMRI) 显示,总体和局部脑容量存在性别差异。在 MAR-ASD 后代中,不同区域的治疗特定影响似乎集中在中脑和小脑结构上。同时,收集体内 1 H 磁共振波谱 (1 H-MRS) 数据以检查内侧前额叶皮质中的大脑代谢物水平。结果表明,与对照动物相比,MAR-ASD 后代的胆碱化合物和谷胱甘肽水平降低,同时牛磺酸水平升高。总体而言,我们发现暴露于 MAR-ASD aAbs 的大鼠表现出行为、大脑结构和神经代谢的改变;让人联想到在临床 ASD 中观察到的发现。
母体免疫失调是自闭症谱系障碍(ASD)的产前危险因素。重要的是,炎症和代谢应激之间存在临床相关的联系,这可能导致细胞因子信号传导和自身免疫性异常。在这项研究中,我们检查了孕产妇自身抗体(AABS)破坏代谢信号传导并诱导暴露后代大脑中神经解剖学变化的潜力。为了实现这一目标,我们基于母体自身抗体相关的ASD(MAR-ASD)的临床现象开发了大鼠母体AAB暴露模型。确认大鼠大坝和特异性免疫球蛋白G(IgG)转移到后代后,我们纵向评估了后代行为和大脑结构。mar-asd老鼠后代在允许与新型伴侣自由互动时,表现出幼犬超声发声的减少,并且在社交行为中表现出明显的定义。此外,在产后第30天(PND30)和PND70在单独的动物中进行的纵向体内结构磁共振成像(SMRI)揭示了性别特异性差异。按区域划分的治疗特异性作用似乎在Mar-Asd后代的中脑和小脑结构上汇聚。同时收集了体内1小时磁共振光谱(1 H-MRS)数据,以检查内侧前额叶皮层中的脑代谢物水平。结果表明,与对照动物相比,含胆碱化合物和谷胱甘肽的水平显示出含胆碱化合物和谷胱甘肽的水平降低。总体而言,我们发现暴露于MAR-ASD AAB的大鼠行为,大脑结构和神经代谢物的改变。让人联想到在临床ASD中观察到的发现。
1)Suzuki,T。(2021)tRNA修改的扩展世界及其疾病相关性。nat。修订版mol。细胞生物。 ,22,375 - 392。 2)Chujo,T。&Tomizawa,K。(2021)人类转移RNA模量:由转移RNA修改中的畸变引起的疾病。 febs J.,288,7096 - 7122。 3)Asano,K.,Suzuki,T.,Saito,A.,Wei,F.-Y.,Ikeuchi,Y.,Numata,T.,Tanaka,R.,tanaka,R.,Yamane,Y. (2018)与牛磺酸降低和人类疾病相关的tRNA修饰的代谢和化学调节。 核酸res。 ,46,1565 - 1583。 4) (2011)CDKAL1对TRNA(LYS)修饰的词置换会导致小鼠2型糖尿病的发展。 J. Clin。 投资。 ,121,3598 - 3608。 5) (2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。 SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。细胞生物。,22,375 - 392。2)Chujo,T。&Tomizawa,K。(2021)人类转移RNA模量:由转移RNA修改中的畸变引起的疾病。febs J.,288,7096 - 7122。3)Asano,K.,Suzuki,T.,Saito,A.,Wei,F.-Y.,Ikeuchi,Y.,Numata,T.,Tanaka,R.,tanaka,R.,Yamane,Y.(2018)与牛磺酸降低和人类疾病相关的tRNA修饰的代谢和化学调节。核酸res。,46,1565 - 1583。4)(2011)CDKAL1对TRNA(LYS)修饰的词置换会导致小鼠2型糖尿病的发展。J. Clin。 投资。 ,121,3598 - 3608。 5) (2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。 SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。J. Clin。投资。,121,3598 - 3608。5)(2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。SCI。adv。,7,EABF3072。6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y.(2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。nucl。酸res。,52,9230 - 9246。7)Blanco,S.,Dietmann,S.,Flores,J.-V.,Hussain,S.,Kutter,C.,Humphreys,P.,Lukk,M.,Lombard,P.,Treps,L.,Popis,M。等。(2014)TRNA的异常甲基化将细胞应激与神经发育疾病联系起来。Embo J.,33,2020 - 2039。
代码 编号 描述 CPT 0006M 肿瘤学(肝脏),利用新鲜肝细胞癌肿瘤组织,测定 161 个基因的 mRNA 表达水平,包括甲胎蛋白水平,以算法报告风险分类器 0007M 肿瘤学(胃肠道神经内分泌肿瘤),利用全外周血对 51 个基因进行实时 PCR 表达分析,以算法报告肿瘤疾病指数的列线图 0019M 心血管疾病,血浆,通过基于适体的微阵列分析蛋白质生物标志物,以算法报告高危人群中 4 年发生冠状动脉事件的可能性 0041U 伯氏疏螺旋体,通过免疫印迹检测 5 个重组蛋白组抗体,IgM 0042U 伯氏疏螺旋体,通过免疫印迹检测 12 个重组蛋白组抗体,IgG 0063U 神经病学(自闭症),通过 LCMS/MS 检测 32 个胺,使用血浆,算法报告为与自闭症谱系障碍相关的代谢特征 0108U 胃肠病学(巴雷特食管),全幻灯片数字成像,包括形态分析、9 种蛋白质生物标志物(p16、AMACR、p53、CD68、COX-2、CD45RO、HIF1a、HER- 2、K20)的计算机辅助定量免疫标记和形态学、福尔马林固定石蜡包埋组织,算法报告为进展为高度发育不良或癌症的风险 0170U 神经病学(自闭症谱系障碍 [ASD]),RNA,下一代测序,唾液,算法分析,结果报告为 ASD 诊断的预测概率 0258U 自身免疫(牛皮癣),mRNA,下一代测序,50-100 个基因的基因表达谱,使用粘性贴片进行皮肤表面收集,算法报告为对牛皮癣生物制剂的反应可能性0263U 神经病学(自闭症谱系障碍 [ASD]),16 种中心碳代谢物(即 α 酮戊二酸、丙氨酸、乳酸、苯丙氨酸、丙酮酸、琥珀酸、肉碱、柠檬酸、富马酸、次黄嘌呤、肌苷、苹果酸、S-磺基半胱氨酸、牛磺酸、尿酸和黄嘌呤)的定量测量,液相色谱串联质谱法 (LC-MS/MS),血浆,算法分析,结果报告为阴性或阳性(针对 ASD 的代谢亚型)0288U 肿瘤学(肺),mRNA,11 个基因(BAG1、BRCA1、CDC6、CDK2AP1、ERBB3、FUT3、IL11、LCK、RND3、SH3BGR、WNT3A)和 3 个参考基因(ESD、TBP、YAP1)的定量 PCR 分析,福尔马林固定石蜡包埋 (FFPE) 肿瘤组织,算法解释报告为复发风险评分 0289U 神经病学(阿尔茨海默病),mRNA,通过 24 个基因的 RNA 测序进行基因表达分析,全血,算法报告为预测风险评分 0290U 疼痛管理,mRNA,通过 36 个基因的 RNA 测序进行基因表达分析,全血,算法报告为预测风险评分