摘要:分子印迹可生物降解聚合物因其靶向识别和生物相容性的能力在药物输送方面受到了广泛关注。本研究报告了一种新型荧光活性磁性分子印迹药物载体(MIDC),该载体使用葡萄糖基可生物降解交联剂合成,用于输送抗癌药物多西紫杉醇。通过扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、X 射线衍射光谱和振动样品磁强计(VSM)对磁性分子印迹聚合物(MMIP)进行了表征。MMIP 的磁化值为 0.0059 emu g − 1,与多西紫杉醇的结合能力为 72 mg g − 1。进行了体外和体内研究以观察 MIDC 在药物输送中的有效性。细胞活力测定表明 MMIP 对健康细胞没有毒性作用。利用MMIP的磁性,只需将外部磁场施加于小鼠(加载20分钟后)并拍摄X射线图像,即可快速识别目标部位的药物载体。因此,基于MMIP的新型药物载体可以在不影响健康细胞的情况下将药物输送到目标部位。
Tidytacos(整洁的分类组合)软件包是用于探索微生物社区数据的R软件包。这样的社区数据由Agplicon测序产生的读取计数组成(例如,16S rRNA基因的区域或元基因组(shot弹枪)测序。tidytacos基于哈德利·威克姆(Hadley Wickham)引入的整洁原则,该原理以一致的格式存储(Wickham等,2023)。具体来说,Tidytacos使用整洁的格式和语法来选择,转换和准备微生物社区数据以进行可视化和分析。此外,它为流行和鲜为人知的分析和微生物社区数据的可视化提供了一系列功能。Tidytacos是为各种专业知识的研究人员而设计的,既可以提高微生物社区数据的可访问性,又可以轻松地转换数据,以实现新颖的可视化和分析方法。
对TFBS间距配置的比较分析以及相对于体内TSS和体外实验条件的距离。tfs分为Y轴的家庭和类,颜色与PlantTF级超类3相对应。TSS以0 bp为中心,并均匀地定向右侧。每行右侧的数字表示分析中使用的样本数量。浅灰色颜色的行表示相应的TF家族缺乏数据。tfbss以与TSS相同的方向为方向而定,指向右侧的蓝色箭头表示,而相对于TSSS的TFBS朝着相反的方向表示的,用指向左侧的红色箭头表示。plindromic TFBS由紫色钻石表示。颜色的强度反映了平均z得分,固体颜色代表更高的分数和更透明的颜色代表得分较低。
摘要。石墨烯具有探索奇异的超导性的承诺。使石墨烯在大尺度上成为超导体是一个持久的挑战。可能使用超导底物依靠外延生长的石墨烯。这样的基材很少,通常会破坏电子带结构的狄拉克特征。Using electron diffraction (reflection high-energy, and low-energy), scanning tunneling microscopy and spectroscopy, atomic force microscopy, angle-resolved photoemission spectroscopy, Raman spectroscopy, and density functional theory calculations, we introduce a strategy to induce superconductivity in epitaxial graphene via a remote proximity effect, from rhenium底物通过插入的金层。弱的石墨烯-AU相互作用与强烈不希望的石墨烯 - RE相互作用形成鲜明对比,通过减少的石墨烯波纹,石墨烯和基础金属之间的距离增加,线性电子分散体和特征性振动签名,这证明了后者的两种特征,也揭示了略微的plate特征。我们还揭示了接近性超导性的插入方法的主要缺点是在石墨烯中产生高点缺陷密度(10 14 cm -2)。最后,我们在低温下展示了石墨烯/AU/RE(0001)中远程接近性超导性。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2025 年 2 月 3 日发布。;https://doi.org/10.1101/2025.02.03.636311 doi:bioRxiv preprint
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
拓扑绝缘体是凝聚态物理学中很有前途的材料,因为它们具有特殊的自旋结构,可以产生非常高的自旋到电荷电流相互转换,这对于新兴的低能耗自旋电子学器件具有重要意义。本研究的目的是探索一类有前途的拓扑材料,这些材料具有高可调性等独特特性——半赫斯勒。我们专注于 PdYBi 和 PtYBi 薄膜的外延生长,这些薄膜是在一系列互连的 UHV 装置上生长和表征的,这使我们能够获得一整套原位表面表征,例如电子衍射、扫描隧道显微镜和角度分辨光电子能谱。使用标准 x 射线衍射和扫描透射电子显微镜进行非原位结构表征,用于控制薄膜中的晶体质量和化学有序性。进行了角分辨光电子能谱分析,结果显示布里渊区点附近存在线性状态。此外,我们使用设计了几何形状的片上器件进行热自旋传输测量,以控制热传播,以测试我们化合物的潜在相互转换效率,发现 PdYBi 和 PtYBi 在不同厚度下的自旋塞贝克系数值都大于铂。这一观察结果为使用半赫斯勒开发高效自旋相互转换材料开辟了道路。
随着微观粒子(m 到 nm)布朗碰撞或表面现象成为主导,自推进游泳者的设计、合成和运动控制仍然是该领域的主要挑战。一种有趣的方法是将微电子器件(例如半导体二极管)用作自推进电子游泳者(e-swimmer)。这些设备具有将运动与电子响应(如光发射)耦合的独特功能。[26-28] Velev 等人在外部电场的作用下,通过电渗机制证明了半导体二极管在空气/水界面的运动控制。[26] 此外,电场不仅提供方向控制,还可以打开和关闭这些电子游泳者的电子响应。虽然需要方向控制,但自主运动是理解集体行为的关键。一种有前途的替代方案是设计由连接到微电子器件电端子的自发化学反应驱动的自主电子游泳者。如果所涉及的氧化还原反应选择得当,可以产生足够的电位差来克服开启这些设备所需的阈值电压。在这项工作中,我们引入了这样一种化学电子游泳器,它基于 Mg 和
Cyril Falentin,A,†,Hadj-Arab,†,Feldia Aissiou B,Claudia Bartoli A,Giuseppe Bazan C,Carvalho的巴斯克国家,Laur'ene Gay,The Virgin Mary和iLardius的圣母玛利亚。 Barbara Pipan Sylvain是Mathieu Tiret A,Imen Tlili D,Marie-Haw Wagner。
