脊椎动物肺部包含多种微生物群落,但鲜为人知的是社区组成或其对健康的后果的原因。肺微生物组组装,例如分散,协同进化和宿主开关。然而,肺微生物组的比较调查很少,特别是对于真菌成分,是mycobiome。区分真菌分类群是通才或专业共生体,潜在的病原体或偶然吸入的孢子,这是迫切的,因为有很高的新兴疾病潜力。在这里,我们提供了禽肺菌落体的第一个特征,并测试了环境,系统发育和功能性状的相对影响。我们使用了195个肺样本中的元法编码和培养,代表20个家庭中的32种鸟类。我们确定了532个真菌分类群(Zotus),其中包括许多机会病原体。这些主要由门comycota(79%)组成,其次是basidiomycota(16%)和粘膜瘤(5%)。酵母和类似酵母菌的类群(Malassezia,Filobasidium,saccharomyces,Meyerozyma和Aureobasidium)和丝状真菌(cladosporium,cladosporium,externaria,neurospora,fusarium和spergillus)很丰富。肺Mycobiomes受环境暴露的强烈影响,并通过宿主身份,性状和系统发育亲和力进一步调节。我们的结果暗示了迁移性鸟类作为机会性致病真菌的长距离传播的潜在向量。
开发诊断方法,以准确评估治疗对岩石杆菌殖民化的影响,这是对保护文化遗产纪念碑的挑战。在这项研究中,我们使用双重态策略在短期和长期的长期和长期测试了基于生物剂的处理对多洛斯酮采石场微生物定植的效率。,我们应用了一种元编码方法来表征真菌和细菌群落,并与显微镜技术集成在一起,以分析微生物与底物的相互作用并评估有效性。这些群落以细菌状态静脉细菌,蛋白质细菌和蓝细菌以及真菌秩序列兰加利亚菌群为主,其中包括先前报道为生物分泌剂的分类单元,并在此处观察到与生物递送过程相关。处理后,随着时间的流逝,丰富的fro填充物随时间变化取决于分类单元。虽然蓝细菌,细胞吞噬和ver列列ciales的丰度减少,但其他群体,例如溶球杆菌,热粒子和胸腺孢子虫增加。这些模式不仅可以归因于生物剂对不同分类单元的特异性影响,而且还可以归因于这些生物的不同再殖民能力。对治疗的不同敏感性可能与不同分类单元的固有细胞特性有关,但是可能涉及杀生物剂对内尔石器时代微生境的差异。我们的结果揭示了去除癫痫定殖的重要性,又是应用杀菌剂以对内石器时代形式作用的重要性。殖民过程也可以解释一些依赖分类群的反应,尤其是在长期中。分类群显示出耐药性,以及在处理后以细胞碎片形式积累的营养积累的那些分类群,可能在殖民处理的区域具有优势,这表明需要长期监测广泛的分类单元。这项研究强调了结合元法编码和显微镜结合的潜在效用,以分析处理和设计适当的策略以打击生物降级和建立预防性保护方案的效果。
人造礁被全球用于帮助自然资源管理,保护,恢复或创造独特的海洋栖息地。讨论了人造礁的最佳建筑材料和设计,对生物社区的影响以及由此产生的生态和社会益处的讨论。本讨论还包括重新利用的海洋基础设施的生态价值,例如退役的石油和天然气平台。平台通常具有数十年的运营寿命,在这时他们可以开发广泛而独特的社区组合。通过重新利用石油和天然气平台来创建人造礁石可以具有生态,经济和社会学优点。但是,由于需要在全球范围内退役的12,000个平台,因此需要对与这些平台相关的生物社区进行整体评估,以告知不同退役方案的潜在结果。我们在泰国湾(GOT)的八个平台和附近的五个软泥沙栖息地位置,使用水,生物量和沉积物样品的环境DNA元法统计(EDNA)来普查。我们在平台上(浅,中,深,深,深,深,深,深)采样了三个目标深度,并在平台上检测到430个分类单元,与中(30 m收集深度; 261个分类群)和
通用系统发育标记,例如核核糖体内部转录序列(ITS),特别是ITS1和ITS2,通常用于估计环境样品中的真菌多样性。然而,许多研究报告了ITS1和ITS2在记录真菌多样性方面的性能和功效上的差异。为了更好地理解使用ITS1与ITS2的含义,需要对多种真菌分类群的全面表示,对于对它们在多个真菌分类单元中使用的荟萃分析是必要的。为了解决这个问题,进行了详尽的文献综述,以比较和对比ITS1和ITS2作为有效的DNA条形码。公开可用的数据集用于合成代表多种真菌分类群的模拟真菌群落,并测试了两个扩增子的功效,并将其与完整的效果进行了比较。这项研究假设ITS1和ITS2对于解决真菌分类单元的分辨率同样有效。具体来说,当比较系统发育分辨率的ITS1和ITS2时,通过两种方法都确定了一组重叠的分类单元,而某些分类单元则由单个其扩增子更好地解决。此处介绍的评估应使读者可以更好地理解ITS1与ITS2在研究真菌多样性和生态学方面的用途和局限性,并使他们能够开发出改进的方法,以更好地分类分辨率,并有助于识别潜在的新物种。
由于它们通常形状和结构难以辨别,因此无法通过形态学检查对化石微生物类群进行精确识别 (Xie & Kershaw, 2012 )。此外,即使是对化石记录中得到很好体现的类群,如有孔虫门,由于存在由裸露的未化石物种组成的演化支,因此仅基于化石数据也无法正确解释它们随时间的演化模式 (Pawlowski et al., 2003 )。因此,与古老的动植物群 (McElwain & Punyasena, 2007 ; Raup & Sepkoski, 1982 ; Signor, 1994 ) 不同,可分类的古生物标本的稀有性只能揭示过去真实的微生物多样性的一小部分,并且难以研究不同地质时代的微生物演化、多样化和功能意义。
肠道微生物组研究已证明2型糖尿病中产生丁酸酯的分类单元的耗竭。我们分析了产生丁酸酯的分类群和胰岛素稳态降低措施之间的关联,胰岛素稳态的措施是,其功能障碍是224名非西班牙裔白人和129名非裔美国人的糖尿病的基础,他们都完成了口服糖耐受性测试。凳子微生物组通过使用分类型弹药的全元素shot弹枪测序进行评估。我们检查了36种丁酸酯产生类群(n = 7属和29种)和胰岛素敏感性,胰岛素分泌,处置指数,胰岛素清除率以及性血糖症的患病性(患者,糖尿病和糖尿病的糖尿病,糖尿病,同伴的46%),适应年龄,性别,性别,BMI,bmi,bmmi。与较高的胰岛素敏感性(B = 0.14; P = 0.002)和处置指数(B = 0.12; P = 0.012)和较低的血糖率(有价值比率[OR] 0.91; 95%CI 0.85 ci 0.85 - 0.97; P = 0.0025)相关。相反,黄酮型与较低的胰岛素敏感性(B = 2 0.13; P = 0.004)和处置指数(B = 2 0.11; P = 0.04)和较高的dysglycemia(OR 1.22; 95%CI 1.08 - 1.38; P = 0.0013)有关。物种水平的分析发现了10种与效果的有益方向相关的细菌和两个对胰岛素稳态不良关联的细菌
海洋酸化(OA)深刻影响海洋生物化学,从而导致生物多样性损失。porifera通常被预测为获胜者分类单元,但是应对OA的策略可能会有所不同,并可能产生多样化的健身状况。在这项研究中,比较了基于V 3 - V 4 16S rRNA基因标记的微生物移位,均具有高微生物丰度(HMA)的邻居无聊的肾脏肾状态肾小管和低微生物含量(LMA)微生物群。海绵Holobionts在具有低pH值(PHT〜7.65)的CO 2通风系统中共发生,并且在Ischia岛附近具有环境pH(pHT〜8.05)的控制位点,代表了研究未来OA的自然类似物,并且面对全球环境变化,物种的反应。微生物的多样性和组成在两个物种跨越不同,但在不同的水平上有所不同。在Cunctatrix中检测到核心分类单元的数量增加,在OA下,在肾牙叶梭状芽孢杆菌中报道了更多样化和柔性的核心微生物组。通气S. cunctatrix表现出形态障碍,以及假定的压力诱导的营养不良的迹象,表现为:1)α多样性的增加,2)从海绵相关的微生物向海水微生物转移,以及3)高营养不良评分。肾形状在代替中,没有形态变化,失调分数低,并且α多样性的降低和排气标本中的核心分类量降低。因此,
根据最近的一项研究,土壤是已知物种的59%(±15%)的遗体(Anthony等人2023,PNAS 120:E2304663120),它的估计值是上一倍的两倍(Decaens等人的25%2006),尤其是来自微生物物种池的更多内容仍然未知。土壤生物参与了广泛的土壤和生态系统过程,例如垃圾分解,养分循环,水过滤和害虫控制,因此对于生态系统功能至关重要。对土壤生物将如何受到人类干预和全球变化的影响以及社区组成的变化将如何影响生态系统过程的知之甚少,主要是因为在很大程度上缺乏有关土壤生物多样性的长期数据。此外,在高通量测序(HTS)的出现之前,由于构成土壤社区的各种分类单元,物种识别一直很困难,并且主要仅在订单,家庭(对于无脊椎动物)或操作分类单位(OTU(OTU)(OTU,OTU)(对于微生物)水平上,大多数情况下才能识别。遵循协调协议的长期跨国监测计划将有助于提供必要的数据,以分析全球变化对土壤生物多样性的影响。选择适当的方法将有助于在寻找土壤社区组成的模式和变化所需的水平上识别分类单元。此外,尽管HTS技术的快速发展使得很难预测
作者:L de Nies · 2022 · 被引用 17 次 — 此外,已知细菌具有针对其他分类群的抑制性次生代谢物的先天防御机制 (Frost 等人,2018)。因此...