所谓的人工智能 (AI) 正在渗透到我们的公共和通信结构中。2019 年曝光的荷兰儿童保育福利丑闻表明,人工智能的不透明性对本已脆弱的群体有多么不利。事后,许多学者呼吁需要更可解释的人工智能,以便决策者可以干预歧视性制度。促进人工智能的可解释性 (XAI) 是解决这个问题的一个良好开端,但不足以让弱势群体有能力充分应对其影响。作为数据和计算机科学的典范,XAI 旨在通过更简单的模型来说明和解释复杂的人工智能,使其更易于访问和合乎道德。问题是,在这样做的过程中,XAI 将透明度非政治化为算法不透明性的补救措施,将透明度视为人为剥夺其意识形态意义。透明度被视为意识形态的解药,尽管我将展示这是一种会产生后果的意识形态举措。例如,它使我们过于关注算法的不透明性,而不是解释人工智能更广泛的力量。其次,它阻碍了我们就谁掌握着对人工智能的解释、应用或批评的权力展开辩论。问题在于,那些受到人工智能影响或歧视的人,就像荷兰的情况一样,几乎没有工具来处理人工智能作为一个系统的不透明性,而那些关注数据不透明性的人正在塑造素养讨论。为了解决这些问题,我建议超越对算法透明度的关注,转向后批判人工智能素养,以加强对访问、赋权和抵抗的辩论,同时不将可探索人工智能作为一个领域,也不将算法透明度作为一种意图。我在这里挑战的是将透明度视为非政治化和算法问题的霸权,并将人工智能的可解释性视为公民赋权的充分途径。关键词
原住民雷安·苏(Rhiann Sue)博士参见在托雷斯海峡和北半岛北部地区,对患有轻度认知障碍(MCI)的原住民进行开发,实施和评估护理模型(MOC)。
喷射混凝土必须适合现场运输(泵送)和应用(喷涂)过程。因此,必须获得合适的稠度和流变性以便浇注。本文评估了各种粘度调节剂 (VMA) 对湿混喷射混凝土流变性和触变性的影响。使用了六种 VMA,根据其成分分为三组:基于二氧化硅、层状硅酸盐的添加剂和聚合物添加剂。在砂浆中深入研究了这些流变改性剂,获得了材料的屈服应力 (τ o ) 和塑性粘度 (μ) 的值,以及触变性(滞后面积),它代表了流体结构恢复所需的能量。为了获得这些参数,使用实验室流变仪在动态状态下测试流体,并施加剪切速率斜坡。此外,通过在流动台试验中获得流动台直径来确定砂浆的稠度。该评估是在含有不同含量的高效减水剂 (SP) 的砂浆中进行的。所有这些信息使得评估 SP 与每种 VMA 结合的影响成为可能,获得一个可工作性箱,确定滞后区域并验证哪些组合获得了优于对照混合物(不含 VMA)的流变行为。所述结果与现场进行的喷射混凝土混合物中获得的回弹指数相关。砂浆的触变性和现场的回弹率值导致了最准确的相关性,从而可以选择最有效的 VMA 用于喷射混凝土。最后,两种综合结果(实验室和现场)允许一种有助于设计和优化湿混喷射混凝土的分析过程。
地热系统选项1或某种使用术语地理交换,是一种涉及甘氨酸和带有塑料管的挖沟的系统。输入能量 /输出能量或性能系数(COP)的回报为2-3。通常将水平沟渠放置在霜冻水平以下约50°F以下。这可能是7-10英尺的深度,涉及发掘,回填,并且可能涉及将免费的排水材料进口到现场。这项工作通常是在美化环境之前进行的,以及需要仔细预先计划的水力和水之类的道路和服务。在剩下有限平方英尺的城市或现有房屋中,在安装家庭帕克纳园或园地绿化区后,很少有可能适合此设置。时间表通常需要2周的好天气,持续时间与房屋地下室基金会相似。
• 与运动捕捉系统 (Vicon、OptiTrack、Qualisys) 紧密集成 • 自定义、强大的对象跟踪器 (每个 CF 一个标记就足够了) 6
BCG 对 COVID-19 危机应对措施的调查发现,大多数公司迄今为止都专注于被动应对措施。但现在是采取大胆变革行动的最佳时机。已经引入 AI 用例的公司应立即推进,以便在短期内实现最大影响。他们不应该犹豫扩大规模,因为 AI 将成为帮助他们应对这场危机的重要杠杆。除非他们是已经以 AI 为核心的数字原生代,否则公司应该将当前日常运营的放缓视为战略反思的机会,反思价值创造机制如何变化——以及如何为后危机世界做好准备。他们应该开始为员工做好准备并重新培训员工,并在即将到来的 AI 时代提高他们的忠诚度、热情和长期价值。
心脏的基本形式虽然人体所有血管的具体排列因动物而异,但这些变化是基于基本脊椎动物计划的修改(您已经在实验室中已经过了)。所有主要动脉和静脉的布置和名称在所有脊椎动物中都是相似的,并且在您的文本中进行了描述。我想在演讲中涵盖的两件事是: - 我们心脏中看到的进化趋势 - 我们在主动脉弓中看到的进化趋势。虽然在您的教科书中分别考虑了这些内容,但我想将这两组结构的趋势一起考虑在一起,而不是在讲座中分别考虑。从系统发育上,心脏可能始于没有明显的腔室或瓣膜的收缩血管 - 就像两栖动物一样。虽然这似乎效率低下,但在这一点上,有机体是无柄的,大多数交换仍在整个身体表面进行。在这些条件下,这种循环形式足以满足他们的需求。随着原子化的发展,我们看到了真正的心脏的发展。在早期脊椎动物中,接收所有静脉血的心脏的第一个腔室是鼻窦静脉。这导致中庭进入中庭,进而进入心室,最终导致动脉圆锥体。每个室通过单向阀与前者分开。所有腔室都是肌肉发达的,并且都能够产生自主节奏(即每个人都有类似起搏器的属性)。管状心脏的屈曲和膨胀使心脏转向不同动物的不同构型,但血液的内部路径总是相同的。心脏从相对直的管变成鲨鱼和鱼中具有独特的“ S”形状,使薄壁的鼻窦静脉和心房在心脏前的心房躺在心室上方。
1994 年 4 月 26 日,一架由中华航空公司运营的空客 A300-600 在日本名古屋坠毁,造成 264 名乘客和机组人员死亡。导致事故发生的原因是机组人员和飞机自动驾驶仪采取的相互冲突的行动。此次坠机事件提供了一个鲜明的例子,说明机组人员/自动化界面故障如何影响飞行安全。虽然这起事故涉及一架 A300-600,但其他事故、事件和安全指标表明,这个问题并不局限于任何一种飞机类型、飞机制造商、运营商或地理区域。1995 年 12 月 20 日,美国航空公司一架波音 757 客机在哥伦比亚卡利附近坠毁,1995 年 11 月 12 日,一架美国航空公司道格拉斯 MD-80 客机在接近康涅狄格州布拉德利国际机场时,下降到最低下降高度以下,撞到树顶,在跑道外着陆,悲剧性地证明了这一点。