如今,纺织业正在构成其东西。一方面,客户可以在个性化移动应用程序上提供多样化的产品,并立即交付和回报。另一方面,由于纺织工艺中的自动化和计算机化的增加,生产比以往任何时候都更有效率。但是,当前的供应链管理系统仍然遇到了几个严重的问题,例如篡改产品,可追溯性差,延迟以及缺乏实时信息共享。今天,一种称为区块链的新技术,这是分散信息技术的开创性创新,它可以解决上述挑战,因为其重要特征(例如分散,透明度和不变性)。在这个方向上,本文提出了一个基于区块链的纺织供应链可追溯性的新框架,该框架可以为所有具有透明度和信息共享的供应链成员提供信息平台。为纺织业创建一个可追溯且透明的供应链,将帮助客户对他们购买的产品及其支持的公司做出明智的选择。对于纺织供应链中的利益相关者,具有可追溯性和实时信息共享可以建立更好的关系,提高效率,并降低产品召回,伪造和不道德的劳动的风险和成本。但是,由于区块链技术仍处于早期阶段,因此它具有一些固有的缺陷,当我们面对现实世界中的质量数据时,可伸缩性成为主要而紧迫的缺陷。因此,我们提出了一种新方法,该方法包括两种是区块链和大数据的技术之间的集成,以大规模填充分散的系统。回答的主要研究问题之一是,如何利用和应用大数据授权的区块链如何通过全球供应链更准确地管理可追溯性和信息共享。在这项研究中,我们研究了可追溯性系统概念和信息共享的必要性,然后介绍区块链整合的大数据框架及其开发过程。最后,评估了该命题的绩效,并提出了可以通过进一步研究来解决这种可追溯性系统的挑战。
引用(APA)Hoekstra,N.,Pellegrini,M.,Bloemendal,M.,Spaak,G。,Andreu Gallego,A.,Rodriguez Comins,J.,Grotenhuis,T.通过含水层热能存储中的创新来增加可再生能源技术的市场机会。总环境科学,第709条,第136142条。https://doi.org/10.1016/j.scitotenv.2019.136142引用此出版物的重要说明,请使用最终公开版本(如果适用)。请检查上面的文档版本。
摘要。在本文中,采用收敛态度对自然样式农业技术进行研究和验证,以提高Agrolandscapes的生产率和碳多边形的创造。作为工作的一部分,实施了一系列实验研究,包括评估Agrolandscape潜力,对传统和自然样的耕作方法的比较分析,以及监测植物生理参数以及土壤中碳积累的动态。这项研究的结果表明,类似自然的农业技术可显着增加谷物作物的产量和质量,并提高土壤肥力及其隔离碳的能力。同时,由于自然资源的更合理使用,生产成本降低了。获得的数据表明,基于自然的农业技术的有前途的应用,以确保可持续和环境安全的农业并解决农业部门脱碳问题。
摘要本文探讨了破坏,重新定义和乘以城市空间的数字技术的能力,从而创造了新的观察和体验城市的方式。基于对渴望男人的生活的民族志研究,中华人民共和国的生活以及他们对所在地感知的约会应用程序的使用,我展示了这座城市是如何作为一个想象中的空间来实现的,并与其他渴望男人的人相关的存在。在社会政治背景下,非亲戚生活在公共场所中基本上是看不见的,蓝色用户的数字介导的可见性互相邀请了一系列社会实践,通过这些实践,城市空间以及“城市”和“城市”的空间类别以及“乡村”的空间类别是在性行为和数字技术的群体中重现的。在非西方的背景下,本文以其经验的重点关注“普通”城市,既挑战了许多数字地理学研究的欧洲中心性及其专注于全球城市的倾向。
摘要最近,欧洲委员会得到了许多欧洲国家的支持,已宣布大量投资量子技术(QT),以解决和缓解当今数字时代面临的一些最大挑战 - 例如安全通信和计算能力。超过二十年来,QT社区一直在努力开发QT,这有望具有里程碑意义的突破,从而在各个领域进行商业化。QT社区的雄心勃勃的目标和欧盟当局的期望不能仅由单个国家的个别倡议来满足,因此需要仅与伽利略或哥白尼计划相当的大型且前所未有的欧洲努力。强烈的国际竞争要求欧洲协调 - 在太空中开发QT,包括在交流和感应领域的技术研究和开发。在这里,我们旨在总结在对空间应用领域产生影响的量子技术开发中的最新状态。我们的目标是概述用于空间中量子技术的设计,开发,实施和开发的完整框架。
关于OpMobility Opmobility(以前为塑料综合)是可持续发展的全球领导者,也是来自每个流动性领域的参与者的全球技术合作伙伴。创新驱动以自1946年基础以来,OpMobility拥有互补的业务团体,为客户提供了广泛的解决方案:智能外部系统,定制的复杂模块,照明系统,储能系统以及电池和氢气电气化解决方案。Opmobility的客户也从其内部软件开发专家Op'nsoft受益。2023年的经济收入为114亿欧元,国际占地152株工厂和40个研发中心的占地面积依赖于其40,300名员工,以应对使出行更具可持续性的挑战。opmobility在巴黎的EuroNext A.它有资格获得延期和解服务(SRD),是SBF 120和CAC中60个指数的一部分(ISIN代码:F FR0000124570)。
3D 打印,也称为增材制造,代表了一系列技术,这些技术使用数字图像文件(通常由计算机辅助设计 (CAD) 软件生成)通过逐层沉积过程创建 3D 对象。随着 3D 打印在过去四十年的发展,许多增材制造技术概念已经发展成为强大的独立技术,正如美国材料与试验协会 (ASTM) 国际增材制造技术委员会 F42 所定义。目前这些技术包括:桶式光聚合、粉末床熔融、材料挤出、材料喷射、粘合剂喷射、定向能量沉积和薄片层压(ASTM International,2022 年)。商用打印机将这些工程概念应用于特定应用和材料,已在各个行业中占有一席之地,每个行业都有自己的优缺点,价格也大不相同。尽管打印技术方法多种多样,但目前最广泛使用的 3D 打印机(包括消费市场)采用的是一种熔融沉积成型 (FDM) 技术,有时也称为熔融长丝制造 (FFF) 技术,该技术基于热塑性材料的挤出,热塑性材料通过加热的长丝喷嘴沉积后会变硬。就材料沉积过程而言,FDM/FFF 是一种基于挤出的打印方法,不同于其他通过液体基质的光聚合或粉末颗粒的熔合来构建结构的方法。总体而言,3D 打印如今被认为是一种有效的技术,适用于需要少量生产高度定制和定制的产品,通常以分散的方式生产,例如在偏远地区生产备件,因为它节省了设计特定制造流程来制造产品以及供应物流的成本和时间。此外,在设计、艺术和时尚领域,3D 打印机已经找到了创造独特复杂设计的空间(Gebhardt 等人,2018 年;Shahrubudin 等人,2019 年)。
全球向碳中和社会的能源过渡需要对发电和消耗以及电力系统的深刻转变。氢具有加速扩大清洁和可再生能源的过程的重要潜力,但是其在动力系统中的集成仍然很少研究。本文回顾了氢技术的当前进展和前景及其在电力系统中的应用,用于水力发电,重新电源和存储。使用实验数据证明了电子和燃料电池的特性,并使用全球项目的示例研究了用于存储氢,用于储能的氢,电力到天然气,共同生成和运输。提出了这些技术和应用的当前技术经济状态,其中成本,效率和耐用性被确定为主要关键方面。这也由文献统计分析的结果确认。最后,结论表明,需要对绩效提高,规模上升,技术前景和政治支持的持续发展,以实现成本竞争性的氢经济。
摘要 第二次量子革命促进了具有前所未有功能的新型传感器、通信技术和计算机的工程设计。量子技术的供应链正在兴起,其中一些专注于支持技术和/或量子技术研究基础设施的商业化组件,另一些则具有更高的技术就绪水平,接近市场。2018 年,欧盟委员会启动了大规模长期量子旗舰研究计划,以支持和促进具有竞争力的欧洲量子技术产业的创建和发展,以及巩固和扩大欧洲量子技术研究的领导地位和卓越性。量子旗舰在其战略研究议程中确定了实现加速发展和应用的措施之一:促进协调、专门的标准化和认证工作。标准化对于促进新技术的发展以及高效供应链的发展确实至关重要。技术、方法和接口的协调使可互操作的产品、创新和竞争成为可能,所有这些都将导致市场结构化,从而促进市场增长。随着量子技术的成熟,是时候开始考虑进一步的标准化需求了。本文从 CEN-CENELEC 量子技术焦点组 (FGQT) 的角度介绍了对量子技术标准化的见解,该焦点组成立于 2020 年 6 月,旨在协调和支持与欧洲工业和研究相关的标准的制定。
几年,人们对在实验中过度使用动物的使用越来越多,尤其是出于道德原因,这导致了搜索可靠的替代模型,例如体外,ex vivo,以及可以在科学研究中使用的硅方法,可作为动物模型替代或替代动物模型的辅助方法(4)。真核细胞培养是许多生物医学应用的动物模型的有趣替代方法,但是这些方法受到限制,因为它们通常涉及单层中的细胞系,但未能模仿重要的组织功能。为了改善这些模型,可以在三维培养物(3D)中生长细胞系,从而发展一些典型的组织结构,例如在肠道细胞的情况下,紧密连接蛋白的表达和粘蛋白的产生(3,5,6)。此外,如表1所述,可以在3D培养物中种植不同类型的细胞系,但是必须考虑它们的优点和缺点,以便为每个应用程序提供最佳的模型选择。三维细胞培养已应用于发育,细胞和癌症生物学以及宿主 - 细菌相互作用的研究,因为它模拟了体内发生的重要特征,包括在体外系统中的细胞细胞和细胞外基质相互作用(6,10,11)。这样的3D培养物代表了单一培养实验和用于研究传染病的动物模型之间的中间立场,尤其是与高通量技术结合使用。鉴于高通量技术的可及性和可负担性的增加(例如,)鉴于高通量技术的可及性和可负担性的增加(例如,这种组合有助于确定宿主特异性免疫反应和病原体相互作用,从而导致对感染的发病机理和治疗的新见解(12-14)。转录组学,蛋白质组学和代谢组学)有很大的机会来测量模型系统中3D培养物的响应,无论是在真核组织侧还是在细菌相互作用的侧面