结构变异(SV)是重大的基因组改变,在包括癌症在内的遗传多样性,进化和各种疾病中起着至关重要的作用。检测SVS的传统方法通常在计算效率,准确性和可扩展性方面面临挑战,尤其是在处理大型基因组数据时。近年来,图形处理单元(GPU)和机器学习(ML)的出现已经开发了解决这些挑战的新途径。本文探讨了GPU加速度和ML技术的整合,以增强结构变体的检测和分析。我们提出了一个全面的框架,该框架利用深度学习模型(用于在GPU上并行处理)以高精度实现实时SV检测。我们的方法不仅减轻了计算负担,而且还提高了与常规方法相比,SV检测的敏感性和特异性。通过在各种基因组数据集上进行广泛的基准测试,我们在速度,准确性和可扩展性方面证明了我们的GPU加速ML框架的出色性能。这些发现强调了将GPU和ML技术相结合以革新基因组研究的潜力,并为在临床和研究环境中更有效,更精确的结构变体分析铺平道路。
致谢 作者谨向瑞典航天界表示感谢;感谢瑞典国家航天委员会的 Kerstin Fredga 教授、Per Tegnér、Per Nobinder、Silja Strömberg、Lennart Nordh 博士等;感谢 Göran Johansson、Olle Norberg、Claes-Göran Borg、Peter Möller、Hans Eckersand、Peter Sohtell、Per Zetterquist、Jörgen Hartnor、Tord Freygård 以及航天工业内众多其他太空爱好者。在瑞典国防界,我要感谢国防物资管理局的 Manuel Wik、Mats Lindhé、Lars Andersson、Thomas Ödman、Björn Jonsson 和 Curt Eidefeldt;感谢瑞典国防学院的 Bo Huldt 教授邀请我为战略年鉴做出贡献;瑞典武装部队的 Anders Eklund、Anders Frost、Urban Ivarsson、Lars Carlstein、Göran Tode、Rickard Nordenberg、Ulf Kurkiewicz 和 Peter Wivstam;以及瑞典国防无线电研究所的 Bo Lithner。法国外交部(对外关系部 - 文化关系总局)提供的奖学金使我得以在 1982 年至 1983 年期间在巴黎度过了三个学期,在巴黎大学学习理论物理学和天体物理学。我还要感谢林雪平技术大学的 Torsten Ericsson 教授在我担任巴黎助理技术专员期间的指导,以及 KTH 的 Anders Eliasson 博士。还要感谢爱因斯坦和薛定谔的前学生、意大利帕维亚大学的 Bruno Bertotti 教授,他认可我在日内瓦联合国“防止外空军备竞赛特设委员会”的工作,并邀请我作为第四届卡斯蒂利翁切洛国际会议“促进核裁军 - 防止核武器扩散”的发言人。关于我在日内瓦的工作
我们提出了一种新颖的视频异常检测方法:我们将从视频中提取的特征向量视为具有固定分布的随机变量的重新释放,并用神经网络对此分布进行建模。这使我们能够通过阈值估计估计测试视频的可能性并检测视频异常。我们使用DE-NONISE分数匹配的修改来训练视频异常检测器,该方法将训练数据注射噪声以促进建模其分布。为了消除液体高参数的选择,我们对噪声噪声级别的噪声特征的分布进行了建模,并引入了常规化器,该定期用器倾向于将模型与不同级别的噪声保持一致。在测试时,我们将多个噪声尺度的异常指示与高斯混合模型相结合。运行我们的视频异常检测器会引起最小的延迟,因为推理需要仅提取特征并通过浅神经网络和高斯混合模型将其前向传播。我们在五个流行的视频异常检测台上的典范表明了以对象为中心和以框架为中心的设置中的最先进的性能。
单眼3D检测(M3D)的目的是从单视图像中进行精确的3D观察定位,该图像通常涉及3D检测框的劳动密集型注释。最近已经研究了弱监督的M3D通过利用许多存在的2D注释来遵循3D注释过程,但通常需要额外的培训数据,例如LiDAR Point Clouds或多视图图像,这些数据会大大降低其在各种应用中的适用性和可用性。我们提出了SKD-WM3D,这是一个弱监督的单眼3D检测框架,利用深度插入以实现M3D,并具有单一视图图像,而无需任何3D注释或其他培训数据。SKD-WM3D中的一个关键设计是一个自我知识的蒸馏框架,它通过融合深度信息并有效地减轻单核场景中固有的深度模棱两可,从而将图像特征转换为3D类似的表示形式,而无需计算上的计算层面。此外,我们设计了不确定性感知的分离损失和梯度定位的转移调制策略,分别促进了知识获取和知识转移。广泛的实验表明,SKD-WM3D明显超过了最新的实验,甚至与许多完全监督的方法相当。
摘要 - 社交媒体中的人们传播了许多信息,以更新其状态并与他人分享关键新闻。但是,这些平台中的大多数并未迅速验证个人或其帖子,人们无法手动识别假新闻。因此,需要一个能够检测假新闻的自动化系统。这项研究提出了使用四种机器学习算法构建模型。实验中采用的数据集是两个数据集的综合,其中包含几乎相等数量的有关政治的真实和虚假新闻文章。预处理阶段首先要通过删除标点符号,令牌化,特殊字符,白色空间,冗余单词消除,数字和英文字母,然后启动并停止数据离散化。然后,我们分析了收集到的数据,其中80%的数据最初用于训练每个模型。之后,应用四种明显的分类算法。使用新闻文章中的虚假新闻,诸如逻辑回归,决策树,随机森林和梯度提升分类器之类的方法。使用其余20%的数据评估了受过训练的分类器的精度。结果表明,决策树模型的最佳精度为99.60%,梯度提升为99.55%。此外,随机森林显示99.10%,逻辑回归98.99%。此外,我们还探索了根据混乱矩阵的结果获得最高精度,回忆,F1得分的最佳模型。索引术语 - 社会媒体,虚假新闻检测,机器学习,分类器,逻辑回归,决策树,随机森林,梯度提升。
3) 每台设备均应通过整体铸造的凸起字母或永久固定在主结构上的标牌进行标记,以显著标明:(a)制造商名称(b)用于识别设备的名称和编号。(c)适用于设备的 Element Materials Technology 测试报告的编号和日期。(d)批准使用设备的本函的设备参考编号。(e)保护等级。4) 每台设备均应附有一份证书,证明设备严格按照 Element Materials Technology 测试报告中提到的图纸制造,并且与 Element Materials Technology 测试和认证的图纸相同。5) 应向客户提供本函的副本、Element Materials Technology 在其测试报告中建议的条件和维护计划(如果有)的摘录以及详细说明设备操作和维护的说明书副本,以保持其防火特性。 6) 标的设备售后服务及维护将由贵方代表负责,地址:Process Sensing Technologies PST Private Ltd, 32 A&B 一楼,Ambit IT Park Ambattur Industrial Estate, Ambattur 村:Ambattur 城市:钦奈 等级/级别:钦奈 区:钦奈 州:泰米尔纳德邦 邮政编码:600058
在最近的研究中,已对开放式摄制对象检测任务进行了大量关注,旨在概括训练期间标记的类别的有限级别,并检测推理时任意类别名称所描述的对象。与常规对象检测相比,打开的词汇对象检测在很大程度上扩展了对象检测类别。但是,它依赖于计算图像区域与一组具有验证视觉和语言模型的任意类别名称之间的相似性。这意味着,尽管具有开放式的性质,但该任务仍然需要在推理阶段的预定义对象类别。这提出了一个问题:如果我们在推理中对对象类别没有确切的了解,该怎么办?在本文中,我们称之为新的设置为生成性开放式对象检测,这是一个更普遍和实际的问题。为了解决它,我们将对象检测形式为生成问题,并提出了一个名为generateu的简单框架,该框架可以检测密集的对象并以自由形式的方式生成其名称。尤其是,我们采用可变形的DETR作为区域促成生成器,其语言模型将视觉区域转换为对象名称。为了评估自由形式的对象划分任务,我们介绍了一种评估方法,旨在定量测量生成量的性能。广泛的实验表明我们的生成量强烈的零射击性能。代码可在以下网址获得:https://github.com/foundationvision/generateu。例如,在LVIS数据集上,我们的GenerateU在推理过程中属于类别名称,即类别名称无法看到类别名称,即使类别名称看不见类别名称,我们的GenerateU也可以与开放式唱机对象检测方法GLIP相当。
勒索软件攻击的威胁不断升级,这突显了有效检测和预防策略的迫切需求。传统的安全措施虽然有价值,但通常在识别和缓解复杂的勒索软件威胁方面差不多。本文探讨了行为分析与勒索软件防御机制的整合,提出了从基于签名的基于行为的检测方法的范式转变。通过分析用户和系统行为的模式,行为分析可以为勒索软件活动的微妙指标提供更深入的见解。本研究研究了各种行为分析技术,包括异常检测,机器学习算法和启发式方法,以及它们在识别勒索软件早期迹象方面的功效。它还解决了与行为分析相关的挑战,例如高误报率以及对不断发展威胁的持续适应的需求。通过对当前方法论和案例研究的综述,本文强调了行为分析的潜力,以增强勒索软件检测和预防,从而提供了更具动态和弹性的网络安全方法。
嵌入式设备可以在本地实时处理生物医学信号,因此临床研究和治疗应用的生物医学信号分析可以受益匪浅。一个例子是分析癫痫患者的颅内脑电图 (iEEG) 以检测高频振荡 (HFO),这是致痫脑组织的生物标志物。混合信号神经形态电路提供了构建紧凑、低功耗神经网络处理系统的可能性,该系统可以实时在线分析数据。在这里,我们介绍了一种神经形态系统,该系统在同一芯片上结合了神经记录头端和脉冲神经网络 (SNN) 处理核心来处理 iEEG,并展示了它如何可靠地检测 HFO,从而实现最先进的准确性、灵敏度和特异性。这是首次使用混合信号神经形态计算技术实时识别 iEEG 中相关特征的可行性研究。
方法:该研究包括737例患者:585例糖尿病(DM)和152例DKD。人口统计和医学特征的倾向评分匹配(PSM)确定了78例患者的子集(DM = 39,DKD = 39)。使用两个Luminex液体悬浮芯片根据分子量和浓度来检测11个尿生物标志物。The biomarkers, including cystatin C (CysC), nephrin, epidermal growth factor (EGF), kidney injury molecule-1 (KIM-1), retinol-binding protein4 (RBP4), a 1-microglobulin ( a 1-MG), b 2-microglobulin ( b 2-MG), vitamin D binding protein (VDBP), tissue在DM和DKD组中比较了金属蛋白酶-1(TIMP-1),肿瘤坏死因子受体1(TNFR-1)和肿瘤坏死因子受体-2(TNFR-2)的抑制剂。使用接收器操作特征(ROC)曲线分析评估了单个生物标志物和各种生物标志物组合的诊断值。