光学干扰过滤器用于现代光学元件的大多数区域,因为它们允许修改高精度光学系统中光传播和运输的参数:反射,传输,吸收,吸收,相位和极化,脉冲持续时间,脉冲持续时间等[1-4]。因此,这些光学特性是由波长,入射角和极化的函数控制的。例如,今天,我们合成和制造了许多光学功能,例如抗反射器,极化器和束分式拆分器,二分色过滤器,镜像和窄带过滤器,多PIC过滤器,高和低通滤波器,高通滤波器,逆滤波器,逆滤波器,chir滤波器和其他滤镜。合成(或设计或反问题)技术从数学和算法的角度取得了很大发展,到现在可以将任何任意光学(强度)函数与多层合构成的点。同时,制造技术已经发生了很大的发展,因此现在可以生产几百个薄层不同材料的过滤器,每一层的厚度从几nm到几百nm不等。某些问题自然保持开放,例如(除其他)相位和宽带特性,大块和微材料以及非光学特性。用于旗舰应用,例如引力波[5,6]或陀螺仪的镜子,而空间光学器件,当前的挑战是打破PPM屏障,即确保通过吸收和散射造成的总损失少于入射通量的100万。尽管假想索引(几个10-6)和多层组件中的低粗糙度(nm的一部分),但尚未达到这种艺术状态。应注意,这些损失也与组件的激光通量抗性直接相关,具体取决于照明状态[7]。在最低的光学损失的最后背景下,这项工作已经进行了。在所需的精度水平上,我们需要分析吸收机制的细节,考虑到这种吸收被转移到热传导,对流和辐射的过程中。对这种光诱导的热辐射的分析[8-10]至关重要:首先,它使我们能够追踪非常低的吸收水平(目前难以测量10-6以下),这可以允许确定
图2在晚期症状阶段发生网络动力学的变化。(a)由状态占领的主组件分析(PCA)加载的组件加载。(b)分数分数显示,与在纵向随访期间未转化为有症状阶段的人相比,转换器(最新的预症状扫描)显着增加。(c)按州分数占用率,显示了状态2(显着性)占用率的转换器的增加。(d)所有承运人的占用率。(e)状态2与非携带者(NC)相比,预症状突变载体(PSC)显示了与年龄非线性关系的证据。genfi,遗传额颞倡议;嗯,隐藏的马尔可夫模型
ione O. C. Wollaccott 1, *,Image J.Kathryn Knowles 1,2,Lucy L. Russell 1,Caroline V. Heslegrave 2,James B. Rowe 3,Borroni 4,Daniela Galimmberti 5:6,Tiraboschi 11,Tiraboschi 11,Maria Masellis 8,Maria Carmela Carmela tartaglia tartaglia tartaglia tartaglia tartaglia tartaglia tartaglia tartaglia robert laforce 21:matthis synatofs synalofzik 26.27.27.27.27,Rik vanden。 43,44,亨利格2:45,46,47,乔纳森·罗勒1.2
摘要 - 基于运动图像的大脑计算机界面(MI-BCIS)是神经技术,可利用运动皮质上的感觉运动节奏的调节,分别称为事件相关的去同步(ERD)(ERD)和综合化(ERS)。ERD/ERS的解释与用于估计它们的基线的选择直接相关,并可能导致误导ERD/ERS可视化。实际上,在BCI范式中,如果两次试验被几秒钟分开,则将基线接近上一个试验结束的基线可能会导致ERD的过度估计,而将基线的基线太接近即将到来的试验可能会导致ERD估计不足。在MI-BCI研究中,这种现象可能会引起对ERD/ERS现象的功能误解。这也可能会损害MI与REST分类的BCI性能,因为这种基准通常被用作静止状态。在本文中,我们建议研究几个基线时间窗口选择对ERD/ERS调制和BCI性能的影响。我们的结果表明,考虑选定的时间基线效应对于分析MI-BCI使用过程中ERD/ERS的调制至关重要。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
Arabella Bouzigues 1 · Lucy L. Russell 1 · Georgia Peakman 1 · Martina Bocchetta 1 · Caroline V. Greaves 1 · Rhian S. Convery 1 · Emily Todd 1 · James B. Rowe 2 · Barbara Borroni 3 · Daniela Galimberti 4.5 · Pietro Tiraboschi 6 · Mario Masellis 7 Maria Carmela Tartaglia 8·Elizabeth Finger 9·John C. Van Swieten 10·Harro Seelaar 10·Lize Jiskoot 10·Sandro Sorbi 11.12·Chris R. Chris R. Butler 13.14·Caroline Graff 15.16·Caroline Graff 15.16·亚历山大·盖尔哈德(Alexander Gerhard)17,18·tob tob tob tob tob lobers langheinrich。拉奎尔·桑切斯(Raquel Sanchez)-Valle 21·Alexandre deMendonça22·Fermin Moreno 23.24·MATTHIS SANOFZIK 25.26·Rik Vandenberghe 27,28.29·Simon Ducharmor 30.31 ·Markus Otto 38·佛罗伦萨Pasquier 39,40.41·Isabel Santana 42.43·Jonathan D. Rohrer 1·遗传FTD倡议,Genfi
压缩态的压缩分布到一组独立的光学模式上,是连续变量量子信息技术领域的重要量子资源 [1],例如单向量子计算 [2] 和量子通信 [3]。此外,多模压缩光在计量应用方面是一种很有前途的工具,特别是用于具有量子增强灵敏度的多参数估计 [4,5]。例子包括通过空间多模压缩实现量子成像 [6,7],以及利用时间/光谱多模压缩光实现远距离时钟的量子改进同步 [8]。上述广泛的潜在应用与不断增强的产生、控制和检测多模量子光的能力密切相关,这得益于空间光调制器、光频率梳、多像素探测器等光学技术的发展。压缩光通常通过放置在光学腔内的二阶非线性晶体中的参量下转换 (PDC) 获得,即所谓的光学参量振荡器 (OPO)。光学腔增强了非线性相互作用,并将压缩光限制为单个空间模式。通过利用光的不同自由度(例如时间/光谱 [ 9 ]、空间 [ 10 ] 和轨道角动量 [ 11 ]),可以产生多模压缩。然而,OPO 谐振腔将压缩带宽限制在谐振腔带宽内。产生宽带多模压缩的一种有前途的替代方法是使用单通 PDC 源,用脉冲激光器泵浦,该激光器在频域中具有光频梳 [ 12 ]。采用脉冲泵浦的单通设计可确保在 PDC 输出的每个脉冲上都维持压缩 [ 13 , 14 ]。基于非线性波导的单通
KIran Samra 1 · Amy M. MacDougall 2 · Georgia Peakman 1 · Arabella Bouzigues 1 · Martina Bocchetta 1 · David M. Cash 1 · Caroline V. Greaves 1 · Rhian S. Convery 1 · John C. Van Swieten 3 · Lize Jiskoot 3 · Harro Seelaar 3 · Fermin Moreno 4.5 · Raquel Sanchez -valle 6·罗伯特·拉夫特(Robert Lafter)7·卡罗琳·格拉夫(Caroline Graff)8.9·马里奥·马塞尔斯(Mario Masellis)10·卡梅拉·塔塔格利亚(Carmela Tartaglia)11·詹姆斯·B·罗(James B. Mentonça22·Chris R. Butler 23.24·亚历山大·格哈德(Alexander Gerhard)25.26·西蒙·杜卡姆斯(Simon Ducharmers)27.28·isabelle le ber 29.30,31.32·Pietro Tiraboschi 333 Markus Otto 42·Sandro Sorbi 43.44·Jonathan D. Rohrer 1·Lucy L. Russell 1代表遗传FTD倡议(Genfi)KIran Samra 1 · Amy M. MacDougall 2 · Georgia Peakman 1 · Arabella Bouzigues 1 · Martina Bocchetta 1 · David M. Cash 1 · Caroline V. Greaves 1 · Rhian S. Convery 1 · John C. Van Swieten 3 · Lize Jiskoot 3 · Harro Seelaar 3 · Fermin Moreno 4.5 · Raquel Sanchez -valle 6·罗伯特·拉夫特(Robert Lafter)7·卡罗琳·格拉夫(Caroline Graff)8.9·马里奥·马塞尔斯(Mario Masellis)10·卡梅拉·塔塔格利亚(Carmela Tartaglia)11·詹姆斯·B·罗(James B. Mentonça22·Chris R. Butler 23.24·亚历山大·格哈德(Alexander Gerhard)25.26·西蒙·杜卡姆斯(Simon Ducharmers)27.28·isabelle le ber 29.30,31.32·Pietro Tiraboschi 333 Markus Otto 42·Sandro Sorbi 43.44·Jonathan D. Rohrer 1·Lucy L. Russell 1代表遗传FTD倡议(Genfi)
在XXI世纪初发现石墨烯并研究了其有希望的性质[1] [1]逐渐出现,并且仍然相关[2,3]对研究二维(2D)材料,尤其是分层金属辣椒素[4,5]的兴趣。层状金属chalco-天鹅是有前途的材料,可用于微电子,光子学和光伏的材料,因为它们具有半导体,金属,介电特性和拓扑绝缘剂的性能[6]。金属硫化剂的分子层的接近1 nm厚度以及它们之间存在弱的范德华键的存在提供了高机械柔韧性和对变形的抗性,从而产生了在柔性电子中的使用潜力[7,8]。由于物理特性的多样性,可以将分层的金属硫化剂用于各种应用,例如。 g。,MOS 2,BI 2 TE 3和2 SE 3中具有紫外线的高电磁发射吸附系数至接近红外范围[9]。结果,基于金属辣椒剂的范德华异质结构具有在功能设备的设计中使用其电子和光电特性的巨大潜力[10]。在2 SE 3中层层层次,最杰出的代表之一是在其基础上创建太阳能照片,光电探测器和存储设备的2 se 3 [6,11,12]。例如,最近在2 SE 3中至少有八个阶段已经在实验中找到并在理论上进行了预测,而不是许多金属辣椒剂,尤其是在2 SE 3中,其特征是存在具有相同化学计量的多态性修饰(相),但具有不同的结构和电子特性。
颞叶癫痫(TLE)是最常见的耐药性癫痫之一,与旁皮脑区域的病理学有关,尤其是在中颞叶中。TLE中的认知功能障碍是经常发生的,并且特别影响情节记忆。至关重要的是,这些困难挑战了患者的生活质量,有时不仅仅是癫痫发作,强调了评估TLE认知功能障碍的神经过程以改善患者的管理。我们的工作利用了一种新型的概念和分析方法,以根据高分辨率MRI分析来评估皮质区域之间微结构差异的空间梯度。梯度轨道轨道区域到区域内的区域变化和骨髓结构的结构,作为结构和功能性组织的系统级别量度。比较了21例患者和35个健康对照之间的皮质范围的微结构梯度,我们观察到了这种梯度在TLE中的组织,这是由于旁皮皮质之间的微观结构分化降低以及剩余的皮质在同侧颞骨和背侧外发前额外区域的显着异常。发现在独立队列中复制。使用独立的验尸数据集,我们观察到体内发现反映了皮质细胞结构中的地形变化。我们确实发现,TLE中微观结构分化的宏观变化反映了帕拉林比克和原发性/运动区域的相似性的增加。与疾病相关的转录组学可以进一步显示我们发现对其他常见癫痫综合征的特异性。最后,微结构的推导与在情节内存功能性MRI范式中看到的认知网络回归有关,并且与任务准确性的个体差异相关。总的来说,我们的发现表明了副层副反应和剩余皮层之间的微体系分化降低的模式,为大规模功能网络重组和TLE的认知功能障碍特征提供了一个结构上的解释。