fi g u r e 1的RRV和重组途径分析的视觉概述:(a)对于八个指标中的每个指标中的每个指标中的每个指标,其模拟的未来平均值与在参考条件下的最小值范围(n = 20,在此显示为分布),以评估它是否超过或超过可变性的参考范围(绿色); (b)对于每个单元,重组的路径是根据多少组成和结构指标超出其参考范围的,在四个指标中有三个指标中的三个指标的变化范围超出了参考范围,构成了弹性丧失。(c)世界地图显示了三个研究景观的位置以及森林条件和高程图(仅森林区域)。图片来源:大提顿 - Timon T. Keller; Berchtesgaden -Rupert Seidl; Shiretoko -Kureha F. Suzuki。地图线描绘了研究区域,不一定描绘了公认的国家边界。
摘要在节肢动物相关的微生物群落中,昆虫特异性病毒(ISV)普遍存在,但由于其自然宿主以外的有限感染性而受到了研究。但是,ISV可能在调节蚊子种群和影响节肢动物传播病毒传播方面起着至关重要的作用。一些研究表明,大多数ISV组成的蚊子中的核心病毒素。采用单个蚊子元素IC,我们全面介绍了比利时本地和侵入性蚊子的病毒素。这种方法允许准确的宿主物种确定,病毒和沃尔巴氏菌的流行评估以及新型病毒的鉴定。与我们的期望相反,在比利时的Culex蚊子中未观察到大量的核心病毒素。在这方面,我们警告严格地定义蚊子核心病毒,并鼓励对其他研究的细微解释。尽管如此,我们的研究确定了45种病毒,其中28个是新颖的病毒,丰富了我们对蚊子病毒瘤和ISV的理解。我们表明,这项研究中的蚊子病毒蛋白是特定物种的,并且较少依赖于来自同一物种的蚊子的位置。此外,由于以前已经观察到沃尔巴奇(Wolbachia)会影响丁香病毒的传播,因此我们报告了比利时蚊子中沃尔巴基亚(Wolbachia)的普遍性,并检测了几种沃尔巴奇(Wolbachia)移动遗传元素。观察到的患病率在Culex Pipiens复合体的成员中为83%至92%。
抽象酸沉积是森林生态系统中的主要生物地球化学驱动因素,但是长期变化沉积对森林生产率的影响尚不清楚。使用树环和森林库存数据的组合,我们检查了树木的生长和气候敏感性,以响应26年的全水 - 硫酸铵((NH 4)2 SO 4)在Fernow实验森林(美国西弗吉尼亚州)的添加。线性混合效应模型揭示了对治疗和氢化气候变量的物种针对性的反应。在控制环境协变量时,北红橡树(Quercus rubra),红枫(Acer Rubrum)和Tulip Poplar(Liriodendron Tulipifera)在对照球员中没有与对照的人类相比,在对照球员的陪同下,在对照球员的情况下,较大的是40%,52%,52%和42%)。茎的生长通常与生长季节水的可利用性和春季温度呈正相关,并与蒸气压的负相关。在对照流域中,北部红橡木,红枫木和郁金香杨树生长对水的供应量更大,这表明酸性处理改变了树木对气候的反应。结果表明,慢性酸沉积可能会降低森林的生长和气候敏感性,对森林碳和在受沉积影响的区域中的水循环产生显着意义。
为了阐明CO 2(ECO 2),C捕获和营养可用性之间的反馈,伯明翰森林研究所(BIFOR)在英国一个成熟的温带森林中建立了一个自由空气co 2富集(面部)设施,在其中将三个面孔阵列(30 m DIA)暴露于高高的CO 2(+150 PPM)在+150 ppm上方的杂物(+150 ppm)生长时,ambient ambient ambient Ambient ambient Ampiest ambient Ampiest ambient ampient ambient ampiest ampient。1面部富集始于2017年,一直持续到迄今为止。响应于CO 2的富集,光合作用CO 2在头三年中平均增加了23%,而这种增强的吸收是由CO 2富集的第七年所维持的。2增强的CO 2摄取导致树木干物质(+10.5%)的总体显着增加,树木基础面积增量增加了28%。通过垃圾降落(+9.5%),根渗出液(+40%)以及有机和矿物质土层中的细根生物量和特异性根长的地下C分配。与确认和量化CO 2受精效应程度的环境阵列相比,在ECO 2下计算出的2021年和2022年的总净初级生产率更高约2吨。
自然资源研究所芬兰(Luke),Latokartanonkaari 9,FI-00790赫尔辛基,芬兰B环境科学司,橡树岭国家实验室,贝塞尔山谷路1号,奥克山脉,田纳西州田纳西州37830,美国田纳西州37830在Zvolen,T.G。Masaryka 24, 96001 Zvolen, Slovakia e Forest Science and Technology Centre of Catalonia (CTFC), 25280 Solsona, Spain f Basque Centre for Climate Change (BC3), Scientific Campus of the University of the Basque Country, 48940 Leioa, Spain g Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain h School of生物科学,阿伯丁大学。23 St Machar Drive,Aberdeen AB24 AB24,英国苏格兰,I Wageningen University and Research,Wageningen环境研究(WENR),DROEVENDAALSESTEEG,3,6708pb Wageningen,荷兰J Forestry and Forest Products and Forest Products and Forest Products Research Institute(Eagan)欧洲森林研究所,Yliopistokatu 6B,FI-80100,芬兰LAMSTERDAM LIFE与环境研究所(A-Life),Vrije Universiteit Amsterdam,1081 HV,阿姆斯特丹,阿姆斯特丹,荷兰MEARZ MEARCIES,VRIJE LIJEITITICITITICITITICITITICITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITIT23 St Machar Drive,Aberdeen AB24 AB24,英国苏格兰,I Wageningen University and Research,Wageningen环境研究(WENR),DROEVENDAALSESTEEG,3,6708pb Wageningen,荷兰J Forestry and Forest Products and Forest Products and Forest Products Research Institute(Eagan)欧洲森林研究所,Yliopistokatu 6B,FI-80100,芬兰LAMSTERDAM LIFE与环境研究所(A-Life),Vrije Universiteit Amsterdam,1081 HV,阿姆斯特丹,阿姆斯特丹,荷兰MEARZ MEARCIES,VRIJE LIJEITITICITITICITITICITITICITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITIT
Nelson Coast temperate forests T 100.00 78.21 78.21 5.46 100.00 Richmond temperate forests T 100.00 36.63 36.63 4.95 100.00 Campbell Island M 100.00 23.43 23.43 3.65 100.00 South Island temperate forests T 100.00 19.96 19.96 4.38 100.00 Fiordland temperate forests T 100.00 99.09 99.09 4.13 100.00 Three Kings-North Cape M 100.00 0.15 0.15 2.14 100.00 Bounty and Antipodes Islands M 100.00 28.77 28.77 2.03 100.00 Westland temperate forests T 100.00 81.68 81.68 1.98 100.00 Rakiura Island temperate forests T 100.00 77.63 77.63 0.63 100.00 Kermadec Island M 100.00 100.00 100.00 0.51 100.00 Chatham Island temperate forests T 100.00 5.72 5.72 0.30 100.00 Antipodes Subantarctic Islands tundra T 86.56 100.00 100.00 0.28 86.56 Kermadec Islands subtropical moist forests T 100.00 100.00 100.00 0.01 100.00 Important Bird and Biodiversity Areas (IBAS)2没有IBA的数据。
摘要:每行(KNR)的内核数是玉米(Zea Mays L.)谷物产量(GY)的重要组成部分,并且了解其遗传机制对于改善GY至关重要。在这项研究中,使用温带 - 热带 - 热带渗入线TML418和一个热带近交系列CML312作为女性父母和一个骨干玉米玉米玉米作为常见男性父母,创建了两个F 7重组近交系(RIL)种群。双向定量性状基因座(QTL)映射和全基因组关联分析(GWAS)。这项研究的目的是:(1)检测与KNR相关的基因组区域和/或基因组区域; (2)确定控制KNR的候选基因; (3)分析候选基因是否有助于改善GY。作者报告说,通过双期QTL映射与KNR密切相关的总共7个QTL,并通过GWAS识别了与KNR相关的21个SNP。在其中,在Dehong和Baoshan的两个位置检测到了一个高度凸的基因座QKNR7-1,两种映射方法。在此基因座,确定了三个新型候选基因(ZM00001D022202,ZM00001D022168,ZM0000001D022169)与KNR相关。这些候选基因主要参与与复合代谢,生物合成,蛋白质修饰,降解和变性有关的过程,所有这些都与影响KNR的渗透性发展有关。这三个候选基因先前尚未报告,被认为是KNR的新候选基因。杂种YE107×TML418的后代对KNR表现出很强的杂种,作者认为这可能与QKNR7-1有关。这项研究为玉米中KNR的遗传机制的未来研究提供了理论基础,并使用异性模式来发展高产混合体。
《制药创新杂志》 2022;SP-11(12):198-202 ISSN (E):2277-7695 ISSN (P):2349-8242 NAAS 评级:5.23 TPI 2022; SP-11(12): 198-202 © 2022 TPI www.thepharmajournal.com 收稿日期: 26-10-2022 接受日期: 29-11-2022 M Younus Wani 温带蚕桑学院,SKUAST-克什米尔,Shalimar 查谟和克什米尔,印度 NA Ganie 温带蚕桑学院,SKUAST-克什米尔,Shalimar 查谟和克什米尔,印度 KA Dar 温带蚕桑学院,SKUAST-克什米尔,Shalimar 查谟和克什米尔,印度 MF Baqual 温带蚕桑学院,SKUAST-克什米尔,Shalimar 查谟和克什米尔,印度 MR Mir 温带蚕桑学院,SKUAST-克什米尔,Shalimar 查谟和克什米尔,印度 通讯作者: M Younus Wani 温带蚕桑学院蚕桑业,SKUAST-克什米尔,沙利马尔查谟和克什米尔,印度
1 UMR 5554 ISEM(IRD,UM,CNRS,EPHE),UNIV MONZONLIER,PACA EUGENE BATAILON,34095 MONTPELLIER CEDEX 5,法国2,Museum 2 Museum Naturkunde,Leibniz Institute for Evolution and Biovive Science Institute for Invelosity and Bioviverity Science,Invalidstr。 div>43,10115德国柏林3 CEFE,CEFE,UNIV MONTPELLIER,CNRS,EPHE-PPSL大学,IRD,IRD,CNRS校园1919 De Mende,34293 Montpellier Cedex Cedex 5 France 5 France 4次生生态实验室,沿海研究,海洋研究部沿海地区,海洋研究部。 Chile, Santiago, Casilla 114-D, Santiago, Chile 5 Institute of Environmental and Evolutionary Sciences (ICAEV), Universidad Austral de Chile, Valdivia, Chile 6 Ictioplankton Laboratory (Labiti), Institute of Biologist, Faculty of Sciences, University of Valparas of Valparaso, Chile 8 Millennium nucleus for Ecology and Conservation of Temperate中间礁生态系统(Nutme)