1 中国农业科学院植物保护研究所,植物病虫害生物学国家重点实验室,北京,2 农业农村部桂林农作物害虫科学观测实验站,桂林,3 中国农业科学院作物科学研究所,国家农作物基因资源与遗传改良重大科学研究设施,北京,4 南京农业大学,植物病虫害监测与治理教育部重点实验室,南京,5 上海交通大学农业与生物学院,微生物代谢国家重点实验室,上海,6 浙江大学生物技术研究所,水稻生物学国家重点实验室,杭州,
溶致液晶 (LLC) 因其具有多种纳米级结构、可加工性和多样化的化学功能而受到众多技术领域的关注。然而,它们的机械性能和热稳定性较差。LLC 中的聚合(称为 LLC 模板化)是克服此问题的有效方法。虽然模板化方法可获得强大的机械、物理和热性能,但聚合后母 LLC 结构的保留一直是该领域的主要关注点。因此,人们做出了许多努力来引入新材料和技术,以在聚合后保留原生 LLC 纳米结构。在这篇综述中,我们在简要介绍 LLC 结构之后,概述了该领域的努力以及从 LLC 模板化中获得的材料的应用。此外,还分析了不同 LLC 结构中的聚合动力学,这是结构保留的关键因素。此外,我们还讨论了该领域的前景和可用的机会。
由密切包装配体形成的非孔产物。用于比较,金属 - 具有协调键和共价键的有机框架(MOF)和共价有机框架(COF),可以基于网状化学的合理设计和合成。18,19因此,它需要一种新的合成方法来控制HOF的形成并丰富它们的结构多样性。模板合成一直是构建多孔材料(例如MOF和COF)的重要策略。例如,通过合成后的金属化/脱位,20,21金属交换,22 - 24或配体交换25 - 28已被广泛用于获得具有与MOF-emplate相同结构/拓扑的靶向功能MOF。这些模板合成利用了可逆的协调键,这些键可以在合成后的修改过程中破坏和改革。可逆协调键也已用于模板COFS 29和多孔聚合物的合成。30 - 32 Yaghi及其同事证明了一个代表性的例子,这些示例使用了Cu I-苯噻吩会协调部分的可逆形成/断裂来构建具有编织结构的COF。29铜中心在COF结构内的编织上是独立的,并用作将螺纹带入编织模式的模板,而不是更常见的平行排列。可以在不破坏COF结构的情况下去除弱的cu i。这些作品激发了我们使用协调债券指导HOF的组装。要实现协调键指导的HOF合成的设计,基于弱协调键的MOF将为
自聚集胶体可用于制备材料,我们研究了胶体水炭分散颗粒中水分蒸发后形成的长棒状聚集体。单分散水炭颗粒(100-200 纳米)由葡萄糖热液碳化合成,并通过透析纯化。在合成过程中,它们形成胶体分散体,在中高 pH 值和低离子强度下静电稳定。水分蒸发后,在中等 pH 条件下,分散体会形成宏观上较大的棒状物。这些棒状物在固-水界面处形成,与干燥方向正交。热解使棒状物具有高度多孔性,但不会对它们的形状产生任何影响。将 Cu-Si 合金反应性地渗入原位热解水炭和形成的三铜硅化物 (Cu 3 Si)-碳化硅 (SiC)/碳复合材料中。在此过程中,Si 原子与 C 原子发生反应,进而导致合金润湿并进一步与碳发生反应。在反应过程中,底层碳模板的形状保持不变,随后将形成的复合材料制剂煅烧成 Cu 3 Si-SiC 基碳基胶体颗粒棒状组件的复制品。使用透射和扫描电子显微镜以及 X 射线衍射研究了所形成固体的形状、成分和结构。从胶体科学的角度,可以进一步研究将合金反应渗透到自聚集和碳基固体中制备的材料,以及探索性地使用由真实生物质制备的水炭,探索与反应渗透有关的组成空间,以及材料在催化中的应用。2021 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
图 1 病变患者 ANTs_cohort 流程第 1 步概览。 (a) 对于标准化,我们研究了两种不同的方法,要么 (1) 将病变大脑直接标准化为 MNI-152 模板,要么 (2) 构建一个代表所研究对象的模板 (队列特定模板/CST),并将病变大脑标准化为模板 (ANTs_cohort)。 (b) 对于后者,使用中风患者的 T1 加权图像以迭代方式构建 CST。 平均图像可用作初始估计值。 在每次迭代中,使用 SyN 微分同胚变换 T i 将原始图像扭曲到 CST。 然后将这些变换的平均值应用于上一步的模板以构建新模板。 重复此过程直至收敛。 通过这种方式,CST 为所考虑的受试者提供了代表性形态——也就是说,它与所有图像“等距”。第二步,使用约束成本函数掩蔽将原始图像归一化为 CST(参见正文)
猪作为一种实验动物的流行程度越来越流行,因为它的术语大脑与人类相似。当前,缺乏适当的脑模板来支持功能和结构性介绍管道。这项工作的主要贡献是从迭代,非线性登记为70至7个月大的雄性尤卡坦小型杂志的平均体积。此外,这项研究的几个方面是独特的,包括比较线性和非线性模板生成的比较,大型且均匀的队列的表征,平均后有效分辨率的分析以及对潜在的模板偏差的评估以及与另一个Minipig种类的模板的比较,并使用“左外”验证。我们发现,在高度均匀的队列中,非线性登记产生了更好的模板,但仅略有。尽管我们的T1加权数据是分辨率有限的,但我们保留了在多主体平均值中的有效分辨率,这会产生具有较高灰白质对比度的模板,并且与替代的Minipig模板相比,具有较高的注册精度。
a 中国科学院心理研究所大脑与心智终身发展研究中心,北京 100101,中国 b 北京师范大学认知神经科学与学习国家重点实验室,北京 100875,中国 c 纽约大学医学院儿童与青少年精神病学系,纽约,NY 10016,美国 d 内森克莱恩精神病学研究所,纽约,NY 10962,美国 e 中国科学院大学心理学系,北京 100049,中国 f 印第安纳大学心理与脑科学系,布卢明顿,IN 47405,美国 g 儿童心智研究所,纽约,NY 10022,美国 h 耶鲁大学心理学系,纽黑文,CT 06511,美国 i 电气与计算机工程系,临床影像研究中心,N.1 健康与记忆网络项目研究所,美国国立卫生研究院新加坡 117574,新加坡 j 浙江大学物理系,杭州 310058,中国 k 滨州医学院,烟台 264100,中国 l 荷兰拉德堡德大学医学中心 Donders 研究所,奈梅亨 6525 EN,荷兰 m 荷兰鹿特丹伊拉斯姆斯大学儿童和青少年精神病学系,鹿特丹 3000 CB,荷兰 n 荷兰鹿特丹伊拉斯姆斯大学医学中心放射科,鹿特丹 3000 CA,荷兰 o 西南大学心理学院,重庆 400715,中国 p 华南师范大学脑研究与康复研究所,广州 510631,中国 q 常州市儿童医院儿童保健研究所,常州 213003,中国 r 南宁师范大学教育科学学院脑与教育重点实验室,南宁 530001,中国 s 中国科学院行为科学重点实验室,北京师范大学心理学系,北京 100101 t 北京师范大学 IDG/麦戈文脑研究中心,北京 100875
CRISPR/CAS技术的常见应用涉及工程基因敲击素,其中DNA序列被取代或插入特定的基因组基因座。In contrast with CRISPR-mediated indels, which result from the error-prone non-homologous end joining (NHEJ) pathway, gene knockins are often engineered via homology-directed repair (HDR), typically through the use of CRISPR reagents (Cas enzyme and guide RNA) in tandem with a DNA template that shares homology with the target site and encodes for the desired modification (Hsu et al., 2014;图1,下面)。用于HDR的模板可以是双链DNA(DSDNA,线性或质粒)或单链DNA(SSDNA),并且最近的发现表明,修复机制取决于使用的模板类型而变化。 dsDNA触发了一种反映减数分裂同源重组(HR)的RAD51依赖性机制,而HDR涉及ssDNA(称为单链模板修复或SSTR)是Rad51独立的,并且需要多个组件,并且需要多个组成部分的Fanconi Anemia Anemia(FA)维修路径(RICHARDARDSON ERATHEWAY(RICHARDARSEN)等。
(ssDNA) 是优于 dsDNA 的 HDR 模板。在此,我们报告了一项系统研究,比较了 HEK293 细胞中的 dsDNA HDR 模板和 IDT Ultramer® 寡核苷酸 ssDNA HDR 模板。测试了链选择和同源臂长度,以确定 HDR 在 Cas9 dsDNA 断裂点创建新的限制位点(6 个碱基插入)的效率。使用较长 ssDNA HDR 模板的初步实验表明,与较短 ssDNA 模板具有类似的优势和行为。具有不对称同源臂的模板的 HDR 插入。使用具有不对称同源臂的 HDR 模板导致 EcoRI 插入率与对称同源臂的插入率相似。使用靶向链模板获得了高 HDR 效率,其中