我们提出并研究了一条特定的绝热途径,以准备那些张张量的网络状态,这些张量状态是有限晶格的少数身体汉密尔顿人的独特基态,其中包括正常的张量网络状态以及其他相关的非正常状态。此路径保证了有限系统的差距,并允许有效的数值模拟。在一个维度上,我们从数值上研究了具有不同相关长度和一维的af af af af af-kennedy-lieb-tasaki(aklt)状态的状态家族的制备,并表明,基于顺序制备,绝热制剂可以比标准方法快得多。我们还将该方法应用于六边形晶格上的二维二二二二链AKLT状态,为此,不知道基于顺序制备的方法,并表明它可以非常有效地用于相对较大的晶格。
摘要在量子纠缠的背景下分析了张量的等级。由n个级别的D子系统组成的复合系统的纯量子状态V被视为n二维Hilbert空间的D倍张量产物中的矢量,并且可以用带有D指数的张量识别,每个指数从1到n。我们讨论了通用等级的概念和张量的最大等级,并审查了以低维度而闻名的结果。该概念的另一个变体(称为张量的边界等级)被证明是与特殊线性变换组生成的量子状态的轨道表征相关的。量子状态v被称为纠缠,如果不能以产品形式写入v̸= v1⊗V2⊗揭示了张量的各个等级和规范之间的关系与相应量子状态的纠缠。
1 中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian
心脏扩散MRI(DMRI)是一种新兴的心肌表征的新兴方法,并且不需要对比剂。当前,最常见的DMRI方法是DTI。1已应用于一系列病理中,包括肥厚性心理 - 肠道 - 2,3张扩张的心肌病,4个梗塞5和杏仁症,6和主动脉瓣狭窄后的重塑7;心肌病理学的典型标志是平均扩散率(MD)的增加和散布各向异性(FA)的降低。dTI使用单个扩散张量来表征扩散过程,该扩散过程代表每个成像体素中组织的平均扩散特征。因此,它不能说明可能是由于限制,结构各向异性无序或具有异质密度的组织可能导致的非高斯扩散。8,9富度热量,每当组织是异质或复杂的,它的敏感性和特异性都较差,从而导致检测和区分涉及多个具有不同方向和特征的细胞群体的过程有限。10,11
有多种动机将引力理论扩展到爱因斯坦广义相对论 (GR) 之外。所有将这一理论与量子物理相协调的尝试都会以额外场、高阶运动方程或高阶曲率不变量的形式引入与广义相对论的偏差。例如,取弦理论中最简单的玻色弦理论的低能极限,得到 ω = − 1 布兰斯-迪克理论,而不是广义相对论,后者是标量张量理论的原型(ω 是布兰斯-迪克耦合)[1,2]。然而,研究替代引力理论的最有力动机来自宇宙学。例如,最受数据青睐的膨胀模型,即斯塔罗宾斯基膨胀,包括对广义相对论的量子修正。最重要的是,基于广义相对论的标准冷暗物质宇宙学模型无法令人满意地理解当今宇宙的加速膨胀:它需要引入一个令人惊奇的精细调节的宇宙常数或另一种形式的特设暗能量,而暗能量的性质仍然难以捉摸[3]。无论如何,即使承认暗能量的存在,冷暗物质的其他问题仍然无法解决,如哈勃张力[4,5]、对同样神秘的暗物质的要求,以及困扰宇宙学和黑洞物理学的奇点问题。因此,研究其他引力理论来解决或缓解这些问题至少是合理的。修改广义相对论最简单的方法是增加一个标量(大质量)自由度,这导致了 Brans-Dicke 引力[6]及其标量-张量推广[7-10]。 f(R) 类引力理论原来是标量张量理论的一个子类,它在解释当前没有暗能量的宇宙加速过程中非常流行([11],参见[12-14]的评论)。在过去的十年中,旧的 Horndeski 引力 [15] 被重新审视并进行了深入研究(参见[16]的评论)。这类理论被认为是最一般的标量张量引力,允许二阶运动方程,但后来人们发现,如果满足合适的退化条件,更一般的退化高阶标量张量 (DHOST) 理论可以允许二阶运动方程(参见[17]的评论)。Horndeski 和 DHOST 理论在其作用中包含任意函数,这使得场方程非常繁琐,研究起来也很困难。多信使事件 GW170817/GRB170817 [ 18 , 19 ] 证实了引力波模式以光速传播,这基本上排除了结构最复杂的 Horndeski 理论 [ 20 ],但仍存在许多可能性(对应于作用中的四个自由函数)。因此,很难掌握这些理论及其解决方案的详细物理意义,并且大部分工作必然局限于形式理论方面和寻找分析解决方案。
其中 p I + p X + p Y + p Z = 1。我们主要考虑去极化噪声的情况 p X = p Y = p Z = p / 3,p I = (1 − p )。▶ 众所周知 1 使用随机 Clifford 单位向量进行编码,可以实现称为哈希界限的速率
计算药物重新定位旨在确定现有药物在治疗其并非针对的疾病方面的潜在应用。这种方法可以大大加快传统的药物发现过程,减少药物开发所需的时间和成本。张量分解使我们能够整合多种药物和疾病相关数据,以提高预测性能。在本研究中,提出了一种用于药物重新定位的非负张量分解 NTD-DR。为了捕捉药物-靶标、药物-疾病和靶标-疾病网络中的隐藏信息,NTD-DR 使用这些成对关联构建一个表示药物-靶标-疾病三重态关联的三维张量,并将它们与药物、靶标和疾病的相似性信息相结合以进行预测。我们将 NTD-DR 与最近的最先进方法在受试者工作特征 (ROC) 曲线下面积 (AUC) 和精确度和召回率曲线下面积 (AUPR) 方面进行了比较,发现我们的方法优于竞争方法。此外,五种疾病的案例研究也证实了 NTD-DR 预测的可靠性。我们提出的方法在前 50 个预测中识别出比其他方法更多的已知关联。此外,NTD-DR 识别的新关联通过文献分析得到验证。
大脑中闪烁刺激会引发周期性信号,即稳态视觉诱发电位 (SSVEP)。它们通常通过回归技术检测,这种技术需要相对较长的试验长度来提供反馈和/或足够数量的校准试验,以便在脑机接口 (BCI) 的背景下可靠地估计。因此,对于设计用于 SSVEP 信号操作的 BCI 系统,可靠性是以牺牲速度或额外记录时间为代价的。此外,无论试验长度如何,当存在影响对闪烁刺激的注意力的认知扰动时,基于无校准回归的方法已被证明会出现显著的性能下降。在本研究中,我们提出了一种称为振荡源张量判别分析 (OSTDA) 的新技术,该技术提取振荡源并使用新开发的基于张量的收缩判别分析对其进行分类。对于只有少量校准试验可用的小样本量设置,所提出的方法非常可靠。此外,它在低通道数和高通道数设置下都能很好地工作,使用短至一秒的试验。在不同的实验环境下,包括具有认知障碍的实验环境(即具有控制、听力、说话和思考条件的四个数据集),OSTDA 的表现与其他三种基准最新技术相似或明显更好。总体而言,在本文中,我们表明 OSTDA 是所有研究的管道中唯一可以在所有分析条件下实现最佳结果的管道。2021 作者。由 Elsevier BV 出版这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
大脑中周期性信号称为稳态视觉诱发电位 (SSVEP),由闪烁刺激引起。它们通常通过回归技术检测,该技术需要相对较长的试验长度来提供反馈和/或足够数量的校准试验才能在脑机接口 (BCI) 的背景下可靠地估计。因此,对于设计用于使用 SSVEP 信号操作的 BCI 系统,可靠性是以速度或额外记录时间为代价的。此外,无论试验长度如何,当存在影响对闪烁刺激的注意力的认知扰动时,无校准回归方法已被证明会出现显著的性能下降。在本研究中,我们提出了一种称为振荡源张量判别分析 (OSTDA) 的新技术,该技术提取振荡源并使用新开发的基于张量的收缩判别分析对其进行分类。所提出的方法对于只有少量校准试验可用的小样本量设置非常可靠。此外,它在低通道数和高通道数设置下都能很好地工作,试验时间短至一秒。 OSTDA 在不同实验设置(包括具有认知障碍的实验设置)下的表现与其他三种基准最新技术相似或明显更好(即具有控制、听力、口语和思考条件的四个数据集)。 总体而言,在本文中,我们表明 OSTDA 是所有研究管道中唯一能够在所有分析条件下实现最佳结果的管道。 2021 由 Elsevier BV 出版