近年来,天然纤维增强复合材料由于其质量轻、耐磨、可燃、无毒、成本低和可生物降解等特性而受到广泛关注。在各种天然纤维中,亚麻、竹、剑麻、大麻、苎麻、黄麻和木纤维尤其受到关注。世界各地对利用天然纤维作为增强材料来制备各种类型复合材料进行了大量研究。然而,缺乏良好的界面黏附力、熔点低和耐湿性差使得天然纤维增强复合材料的使用不那么有吸引力。天然纤维的预处理可以清洁纤维表面、对表面进行化学改性、停止吸湿过程并增加表面粗糙度。在各种预处理技术中,接枝共聚和等离子处理是天然纤维表面改性的最佳方法。天然纤维与乙烯基单体的接枝共聚物可在基质和纤维之间提供更好的粘合性。本文回顾了预处理天然纤维在聚合物基质复合材料中的应用。还讨论了天然纤维表面改性对纤维和纤维增强聚合物复合材料性能的影响。POLYM. ENG. SCI.,49:1253–1272,2009 年。ª 2009 年塑料工程师协会
菌丝体结合复合材料是一类新型可持续且价格实惠的生物复合材料,最近被引入包装、时尚和建筑领域,作为传统合成材料的替代品。近年来,人们进行了广泛的调查和研究,以探索菌丝体结合复合材料的生产和加工方法以及寻找其潜在应用。然而,这种新型生物复合材料在建筑行业的应用仅限于小规模原型和展览装置。机械性能低、吸水率高以及缺乏标准生产和测试方法等问题仍然是菌丝体结合复合材料用作非结构或半结构元素时需要解决的主要挑战。这篇简短的评论旨在展示菌丝体结合复合材料在建筑领域的应用潜力,包括隔热和隔音以及替代干式墙和瓷砖。本综述总结了有关建筑领域使用的菌丝体结合复合材料的特性的主要可用信息,同时提出了未来研究和开发这些生物复合材料在建筑行业应用的方向。
近年来,人们广泛讨论了从设计和生产率角度来看 AM 工艺的无数优势和挑战,但最近许多研究指出,从材料角度来看,这些创新的加工技术也带来了许多优势和挑战 [3]。事实上,从材料的角度来看,要解决的主要问题与 AM 零件的性能研究以及市场上可加工材料的数量有限有关。基于这些考虑,许多大学、研究中心和行业开始研究原料特性、AM 工艺参数和材料特性之间的相关性,并寻求扩大可用于 AM 工艺的材料组合 [3]。因此,我们推出了本期特刊,总结了这些主题的最新研究活动。以下按材料类别介绍了 AM 材料开发的主要最新进展。
近几十年来,激光技术的进步使飞秒激光器的创建成为可能。这是一种特殊的激光类型,在该激光器上,激光束由重复的高能灯爆发仅几百秒秒,而与在每个常见激光指针中发现的连续激光束相反。短脉冲持续时间与每个爆发中的高能量配对会产生显着的峰值功率,从而使激光器能够以常规激光不能无法处理的方式处理材料。但是,能够产生飞秒激光束的机器的大尺寸和重量通常要求它们保持固定。要利用激光束进行处理,需要精确的重定向。在本报告中,我们描述了将常规CNC机器转换为激光处理站的过程,并通过在玻璃,金属箔和KTP晶体上写下我们的发现。该机器能够遵循具有千分尺精确度的CAD说明,以更改,铭文和切割一系列材料。使用绿色(λ= 514 nm)以及红外激光(λ= 1028 nm)进行处理,后者产生更好的结果。最终的激光设置可用于反复,可靠地处理所有材料,并在与化学蚀刻结合使用时在KTP上有很有希望的结果。
根结线虫(Meloidogyne spp。,rkn)是全球最具破坏性的内寄生虫线虫之一,通常导致作物生长和产量的降低。洞悉宿主-RKN相互作用的动力学,尤其是在不同的生物和非生物环境中,对于设计新型的RKN缓解措施可能是关键的。植物促进生长细菌(PGPB)涉及不同的植物生长增强活动,例如生物铜质化,病原体抑制和全身耐药性的诱导。我们总结了有关PGPB和非生物因素(例如土壤pH,质地,结构,水分等)作用的最新知识。在调节RKN-host相互作用中。rkn直接或间接地受到不同PGPB的影响,相互作用中的非生物因子相互作用以及对RKN感染的宿主反应。我们强调了(i)PGPB直接和间接影响RKN-宿主相互作用的三方(host-rkn-pgpb)现象; (ii)宿主对根际PGPB的选择和富集的影响; (iii)土壤微生物如何增强RKN寄生虫; (iv)宿主在RKN-PGPB相互作用中的影响,以及(v)非生物因子在调节三方相互作用中的作用。此外,我们讨论了不同的农业实践如何改变相互作用。最后,我们强调将三方互动知识纳入集成的RKN管理策略的重要性。
3.0 'ISPAN' Module Development .............................................................. 15 3.1 Flat Stiffened Panel .......................................................................... 16 3.1.1 DIAL Shell Element .............................................................. 18 3.1.2 Model Geometry .................................................................. 19 3.1.3 Loads .....................................................................................................................................................................................................................................................边界条件................................................................................................................................................................................................................................................................... 21 3.1.5解决方案............................................................... 3.2.1.1 Example 1 Linear Static Analysis .................................. 26 3.2.1.2 Example 2 Bifurcation Buckling Analysis ........................ 31 3.3 Flat Rectangular Tubular Truss Core Panel ............................................... 35 3.3.1 Program Components ............................................................ 35 3.3.1.1 Command Module ................................................... 35 3.3.1.2前处理器..................................................................................................................................................................................................................................... 3后处理器.............................................................................
所提供的作品“原样”。麦格劳 - 希尔(McGraw-Hill)及其许可人对使用工作的准确性,充分性或完整性或结果不保证或保证,包括可以通过超链接或otherwise通过工作访问的任何信息,并且明确不违反任何保修,明确或暗示,包括但不限于商品或特定用途的植入保修,包括但不限于植入的保修。McGraw-Hill及其许可方不保证或保证工作中包含的功能将符合您的要求,或者其操作将不间断或无错误。McGraw-Hill及其许可人不应对您或其他任何人承担任何不准确,错误或遗漏的责任,无论原因,在工作中或对此造成的任何损害赔偿。麦格劳 - 希尔(McGraw-Hill)对通过工作访问的任何信息不承担任何责任。在任何情况下,麦格劳 - 希尔(McGraw-Hill)和/或其许可人不得对由于使用或无法使用工作而造成的任何间接,偶然,特殊,惩罚性,结果,结果或类似损害均承担责任,即使已告知其中任何一个损害的可能性。这种责任限制应适用于任何索赔或造成任何索赔或引起合同,侵权或其他索赔。
脚是人体的一部分,需要穿着鞋子或拖鞋进行许多活动。脚部畸形往往会使人们在活动时一直感到疼痛。这提高了对鞋垫产品的需求的重要性,尤其是鞋类矫正器。使用计算机辅助制造 (CAM) PowerMill2016 技术对五个参数进行优化,即刀具路径策略、进给速度 (B)、主轴转速 (C)、步距 (D) 和排屑槽数量 (E)。获得了表面粗糙度 R a = 6.15 µm 和加工时间 (T a = 3.725 小时) 的最佳值。© 2019 Elsevier Ltd. 保留所有权利。同行评审由 2018 年第六届先进材料科学与技术国际会议、第六届 ICAMST 科学委员会负责。
为维持快速的经济增长,孟加拉国对电力的需求正在快速增长。孟加拉国最大的电力份额来自化石燃料发电厂。尽管由于地理位置优越,太阳能在孟加拉国具有巨大的潜力,但该国几乎没有采取任何举措来发展太阳能行业。目前,孟加拉国政府对太阳能园区选址的批准标准没有任何科学依据。因此,本研究旨在制定孟加拉国太阳能园区的选址标准。采用 AHP 的德尔菲法确定太阳能园区选址的标准及其权重。进行了两轮德尔菲法问卷调查:第一轮,制定标准清单;第二轮,确定标准的权重。最终确定的标准是:土地覆盖(即植被、水体、建筑面积、裸地)、土地坡度、地表太阳辐照度、地表温度和变电站位置。其中,土地覆盖和变电站位置对于确定孟加拉国太阳能园区的合适位置具有最重要的意义。
随着全球气候变化和人类活动对陆地生态系统的日益增长,了解高山草原生态系统及其影响因素的质量对于有效的生态系统管理和改善人类福祉是至关重要的。但是,基于多标准评估的高山草原的当前自适应管理计划有限。这项研究利用了77个采样点,无人机遥感和卫星遥感数据的领域研究,根据植被和土壤指示器构建高山草原质量指数,并评估生态系统的弹性和压力。评估表明,藏族高原的高山草原被分为五个区域,表明质量和压力水平的显着差异。关键发现表明,高质量的压力区占高山草甸面积的41.88%,占高山草原的31.89%,而质量改善限制区则占相应区域的21.14%和35.8%。该研究建议基于质量水平的高山草原的分级保护和恢复策略:优先考虑高质量的草原,对中等优质草原的动态监测和增强,并应用人工干预措施以及适合低品质草原的物种。这项研究强调了基于分区的自适应策略对可持续生态系统管理的重要性,并为在藏族高原的有效管理和保护高山草原提供了宝贵的见解。
