自 2018 年以来,我们与多家全球品牌、棕榈油公司以及非政府机构合作,旨在为印度尼西亚的 Siak 和 Pelalawan 地区带来大规模的变革性可持续发展影响,即所谓的 Siak Pelalawan 景观计划 (SPLP)。Siak 和 Pelalawan 地区拥有 200 多个村庄,辖区面积超过 200 万公顷。该计划帮助保护了森林、泥炭和生物多样性,并支持了小农户的可持续发展绩效。该项目从村级参与开始,确定了村庄中与可持续发展相关的关键问题,并开展了村庄协调员的能力建设。开展了各种最佳管理实践培训 - 包括火灾管理和良好农业实践。在 Neste 的网站上阅读有关该项目的更多信息,在 SPLP 的网站上阅读实地故事。
了解纳米级物质和过程的物理和化学对于所有科学学科都至关重要。先进材料和纳米技术都是跨学科研究领域,有机会跨不同研究领域进行合作并分享知识、工具和技术。先进材料和纳米技术国际跨学科硕士课程经过精心设计,为探索这些研究领域快速扩展的科学视野提供了途径,预计未来几十年将取得巨大进步。该课程的核心课程为该研究领域奠定了坚实的基础。随后,学生可以利用大量的选修课和在参与部门进行最后一年项目的选择。
随着人工智能 (AI) 和物联网 (IoT) 的融合重新定义了行业、商业和经济的运作方式,对边缘节能和高性能计算的需求呈指数级增长。神经形态计算是一种新兴的计算范式,受到生物大脑的低功耗和并行处理能力的启发,克服了传统计算机架构的许多限制。最重要的是,通过在内存中执行计算,神经形态计算克服了冯·诺依曼瓶颈,从而提高了计算能力,同时节省了更多的面积和功耗。虽然已经开发出几种具有出色能效的独立神经形态芯片来运行特定的人工智能算法,但这种数字系统在与边缘传感器连接时仍然会受到影响。这是因为传感输入是非结构化的、非规范化的和碎片化的,这会给具有分离的传感和处理单元的数字系统带来巨大的能源、时间和布线开销。这就需要融合传感、内存和处理功能的内存传感技术,以充分发挥生物电子学和机器人学中使用的高度复杂的传感器和执行器系统的潜力。尽管内存传感和计算的概念还处于起步阶段,但它已经在电子皮肤和仿生眼等专业领域取得了重大进展。然而,这些主要是软件实现,与之相辅相成的硬件挑战尚未得到解决。要充分利用仿生边缘处理能力,仍存在硬件层面(材料和设备)的基本挑战需要解决。因此,“内存传感和计算:新材料和设备迎接新挑战”于去年启动,引发了对最新发展和观点的讨论。来自微电子、材料和计算机科学等多学科背景和不同地区的研究人员已经发表了与此相关的意见和/或原创作品
回归是预测连续价值的过程。我们可以使用回归方法来预测使用其他一些变量的连续值,例如CAR模型的CO2发射。例如,让我们假设我们可以访问包含与来自不同汽车的CO2排放相关的数据的数据集。数据集包含诸如汽车发动机尺寸,气缸数,燃油消耗量和来自各种汽车型号的CO2排放之类的属性。现在,我们有兴趣估计其生产后新车模型的近似CO2发射。使用机器学习回归模型这是可能的。在回归中,有两种类型的变量:一个因变量和一个或多个自变量。因变量是我们研究和尝试预测的“状态”,“目标”或“最终目标”,而自变量(也称为解释变量)是这些“状态”的“原因”。自变量通常通过x显示,并且因变量用y表示。回归模型将y或因变量与x的函数相关联,即自变量。回归的关键点是因变量值应该是连续的,而不是离散值。但是,可以在分类或连续测量量表上测量自变量或变量。回归的类型:基本上,回归模型有两种类型:简单回归和多重回归。简单回归是当使用一个自变量来估计因变量时。它可以在非线性上是线性的。例如,使用“汽车的发动机尺寸”预测CO2排放。回归的线性基于自变量和因变量之间关系的性质。存在多个自变量时,该过程称为多个线性回归。例如,使用变量“汽车的发动机尺寸”和“汽车中存在的气缸数”来预测CO2排放。再次取决于因变量和自变量之间的关系,多个线性回归可以是线性或非线性回归。
问题:大的地球大黄蜂(Bombus terrestris)保持了社会核心肠道微生物,与蜜蜂相似,蜜蜂对宿主的健康和抵抗起着重要作用。在实验室条件下使用商业蜂箱进行的实验仅限于垂直传播的微生物和忽视环境因素的影响或微生物的外部收购。各种环境和景观水平因素可能会影响授粉昆虫的肠道菌群,这对农业生态系统的授粉媒介健康和舒适性产生了影响。仍然,尚不完全清楚是否可以对大黄蜂微生物群具有重要影响。在这里,我们在半场实验中进行了测试,如果大黄蜂微生物群在暴露于户外笼子内不同型号多样性时随着时间的流逝而变化。我们使用商业蜂箱分别与巢环境或暴露的外部环境区分垂直和水平传播的细菌。
1969 年,人们发现一种以前未知功能的牛红细胞蛋白具有催化超氧化物自由基歧化活性 (1-3)。这种酶,即超氧化物歧化酶,是一种金属蛋白,每分子含有 2 (1.8-2.0) 个铜原子和 2 (1.7-1.9) 个锌原子,分子量为 33,000,由两个大小相同的亚基组成 (4, 5)。从其他真核生物中纯化的铜锌歧化酶在分子量、亚基结构、氨基酸组成、铜锌含量以及对纯化所用的氯仿-乙醇混合物的稳定性方面与牛红细胞歧化酶相似 (2, 3)。细菌来源的酶代表一类独特的超氧化物歧化酶,其每个分子含有 1-2 个锰原子作为金属辅因子,对氯仿-乙醇处理不稳定,其氨基酸组成与铜锌歧化酶明显不同(2、3、6-8)。细菌酶的分子量约为 40,000,每个酶含有两个分子量为 20,000 的亚基。最近又分离出两种超氧化物歧化酶,其稳定性、纯化特性和氨基酸组成与细菌锰歧化酶相似。一种来自鸡肝线粒体(8)的超氧化物歧化酶每个分子含有 2.3 个锰原子,虽然它是四聚体,但其亚基分子量与细菌含锰酶相同。另一种是含有铁(每个分子约 1 个原子)而不是锰的,已从大肠杆菌中分离出来(9),是一种二聚体,其亚基大小相同(分子量 19,000)。已在各种需氧、厌氧和耐氧厌氧微生物中测量了超氧化物歧化酶活性水平(10)。从观察到的相关性来看,
美国关键矿产协会执行董事 Sarah Venuto:“美国关键矿产协会对参议员 Hickenlooper、Graham、Coons 和 Young 就两党合作推出《关键材料未来法案》表示赞赏。中华人民共和国继续部署操纵市场的策略,以破坏国内和与盟友共同为关键材料创造新替代来源所做的努力。即使在我们扩大采矿能力并努力扩大分离技术规模的同时,我们也绝不能忽视中国对中游的控制。虽然我们继续负责任地增加关键矿产的生产、加工和回收,但中国在矿产加工方面的主导地位仍然是一个巨大的挑战。事实上,中国控制着全球一半以上的锂、钴、镍加工能力和 90% 以上的稀土加工能力。为了真正确保美国加工企业的近期、中期和长期财务增长和稳定,我们必须赋予政府和行业新的工具,以迅速、坚决地应对中国旨在破坏我们不断增长的加工基础的反竞争行为。”
摘要:顶复门寄生虫新孢子虫是全球范围内导致牛流产和死胎的主要原因。通过删除毒力基因 actA 、 inlA 和 inlB ,设计出减毒突变单核细胞增生李斯特菌菌株 (Lm3Dx),以避免全身感染并将载体靶向抗原呈递细胞 (APC)。插入编码新孢子虫主要表面蛋白 NcSAG1 的 sag1 ,产生疫苗菌株 Lm3Dx_NcSAG1。评估 Lm3Dx_NcSAG1 的有效性的方法是,将 1 × 10 5、1 × 10 6 或 1 × 10 7 CFU 的 Lm3Dx_NcSAG1 接种到雌性 BALB/c 小鼠体内,每隔两周进行三次肌肉注射,然后在怀孕第 7 天用 1 × 10 5 个高毒性 NcSpain-7 菌株的犬新孢子虫速殖子进行攻击。观察到剂量依赖性保护作用,用 1 × 10 7 CFU 的 Lm3Dx_NcSAG1 治疗的组的出生后后代存活率为 67%,而未接种疫苗的对照组的存活率为 5%。在安乐死时(产后 25 天),接受两个较高剂量的组的 IgG 抗体滴度显著降低,接种组的脾细胞培养上清液中的细胞因子回忆反应(IFN-γ、IL-4 和 IL-10)增加。因此,Lm3Dx_NcSAG1 在怀孕的新孢子虫病小鼠模型中诱导与平衡 Th1/Th2 反应相关的免疫保护作用,应在反刍动物模型中进一步评估。