本文在跨学科和全岛框架内讨论了爱尔兰女性的分治小说。通过仔细阅读经历过爱尔兰分治的女性创作的小说,本文追溯了她们如何记录这一时期并展望替代的未来。将她们的作品置于更广泛的机构记忆关系中,本文旨在增进我们对持久创伤及其后记忆的理解。在百年纪念十年(2012-2023)之后,突出女性的分治叙事如何改变或取代关于爱尔兰革命的主导元叙事?2023 年是《贝尔法斯特/耶稣受难日协议》签署 25 周年。在英国脱欧和爱尔兰边界争议持续不断的背景下,这些重要纪念日的交汇引发了关于如何从爱尔兰的角度处理这段紧张历史的问题。
法国武装部队总参谋长蒂埃里·伯克哈德将军在德国总参谋长代表的见证下,分享了他对法国武装部队多元化的作战愿景,德国总参谋长代表传递了欧洲全球安全导向(EOGS)女性军官培训计划的火炬。
摘要:羟基磷灰石纳米粒子 (HApNPs) 是一种尺寸小于 100 纳米的无机材料。它们的主要特性是生物相容性,因为它们的化学成分与人体骨骼相似,因此适合在生理环境中使用。这些特性使它们成为一种有前途的甾醇衍生药物输送替代品,与传统的药物输送方法相比,具有更好的靶向性和控制释放性。在本研究中,使用化学沉淀法合成了负载胆固醇和 β-谷甾醇的 HApNPs。通过傅里叶变换红外 (FTIR) 光谱对纳米粒子 (NPs) 进行表征,以识别功能组并确认 HApNPs 上存在甾醇。使用透射电子显微镜 (TEM) 和动态光散射 (DLS) 分析了 NPs 的形态和尺寸。通过热重分析确定甾醇衍生物的负载量,并评估了纳米粒子在酸性介质中的稳定性。结果表明,成功合成了负载胆固醇和β-谷甾醇的HApNP,其呈球形,直径小于100纳米。数据证实胆固醇和β-谷甾醇已掺入HApNP表面,并且随后释放。此外,纳米生物界面中甾醇衍生物的存在增强了纳米粒子对酸性条件的抵抗力,表明它们有可能作为药物纳米载体在肠道中靶向释放,而不会在通过胃的过程中发生改变。关键词:羟基磷灰石纳米粒子、胆固醇、β-谷甾醇、界面、酸性介质。
。长期生态计划(PELD):联邦政府的倡议,旨在建立有关生态系统生态学主题的科学研究网站网络。研究的重点是巴西生态系统,它们的生物多样性,自然过程以及人类影响和环境变化对生态系统功能的影响。这些长期研究工作对于研究生物多样性,生态系统功能,公共卫生和人类福祉之间的关系至关重要。它们对于培训人力资源和加强生态和相关领域的研究生计划也至关重要。通过PELD收集的数据(包括有关生态系统及其相关生物群的大量长期数据集)与巴西高度相关。该计划是国际长期生态研究(ILTER)网络的一部分,该网络旨在促进参与长期生态研究的研究人员之间的国际合作。四个PELD覆盖巴西的珊瑚礁:PELD TAM,PELD CCAL,PELD ABR和PELD ILOC。所有人都由国家科学技术发展理事会(CNPQ)和州研究资助机构(FAAPS)(https://peldcom.eco.br/lista-dos-dos-sitios-peld/)资助。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
18人民共和国和英国英国和北爱尔兰,“英国英国政府和北爱尔兰政府的联合宣言以及中华人民共和国政府在香港问题上”,UNTS 1399(1985)(1985):33-61:33-61,第3(2)条(2)和3(3)。
概述我们很高兴提交有关默塞德县审计员控制者内部审计功能状况的年度报告,根据国际内部审计要求的国际标准。本报告包含了我们2023-24财年审计计划中进行的审计摘要。内部审计资源目前还有一位会计师除了部门内的其他必需任务外,还执行内部审核。执行的工作由部门经理监督和审查。目的,权威和责任是内部审计职能的存在,以通过协助和支持县,监事会和其他利益相关者来启发和提高公众对政府的信任,以透明和正直实现其使命。这也是对否则可能从事浪费,欺诈和虐待的员工的威慑。我们通过提供可靠,独立和客观的评估和咨询服务来实现这一目标,从而利用系统和纪律处分的方法来增加价值并改善运营。我们在控制和其他过程的估值和增强,风险最小化以及提高利益相关者的运营效率的增强方面贡献了专业知识。内部审计职能的权限是加利福尼亚政府法规第26881和26883节。根据政府法规第1236条,我们遵循国际审计专业实践(标准)的国际标准。我们的审计职责包括:我们的责任包括保持独立性和客观性,不断增强我们的技能和知识,并在我们执行工作时提供一致,清晰的沟通。
摘要 人工智能 (AI) 为各个领域的研究发展开辟了新途径。人工智能技术在不同领域的广泛应用为未来创造了光明的前景。在图书馆领域,人工智能大大提高了信息资源的可用性和利用率,有助于实现图书馆的目标。为了保持相关性,图书馆员必须采用创新思维,因为人工智能现在已应用于图书馆的众多功能中,从组织书籍到促进书籍的传递。人工智能带来了新的可能性,例如整合物理和数字资源以及将视频辅助与物理材料联系起来。这篇评论文章探讨了人工智能 (AI) 在图书馆学中的整合,重点关注通过全面的文献检索发现的应用、工具和挑战。人工智能正在日益改变图书馆的运营,为编目、分类、内容发现和用户交互提供创新的解决方案。这篇评论强调了关键的人工智能驱动工具,例如聊天机器人、推荐系统和自动编目软件,这些工具可以提高图书馆的效率和用户体验。然而,图书馆采用人工智能也带来了重大挑战,包括数据隐私问题、专业培训需求以及工作岗位流失的可能性。本文综合了当前的研究结果,对人工智能在现代图书馆中的作用提供了细致入微的理解,深入了解了人工智能的变革潜力以及充分发挥其优势所必须克服的障碍。
经过 2020 年 12 月开始的多年过程和两轮广泛的公众咨询后,B 公司认证标准的演变过程已进入后期阶段。金融服务业是一个独特而多样化的行业,它拥有独特的商业模式和方法来管理其对社会和地球的(潜在)环境和社会影响。在制定新标准的过程中,我们认识到需要为金融服务业制定量身定制的标准。最初的轨迹是在制定 B 公司的新标准之后或同时制定金融行业的独特标准。因此,目前针对 B 公司的现行标准草案并未充分考虑到该行业的细微差别,可能并不全面适用于金融服务业。
Mini-EUSO 是一台于 2019 年在国际空间站上发射的望远镜,目前位于空间站的俄罗斯部分。该任务的主要科学目标是寻找核物质和奇异夸克物质,研究瞬变发光事件、流星和流星体等大气现象,观察海洋生物发光以及人造卫星和人造空间碎片。它还能够观测能量高于 10 21 eV 的超高能宇宙射线产生的广泛空气簇射,并探测地面激光产生的人造簇射。Mini-EUSO 可以在紫外线范围(290 - 430 nm)内绘制夜间地球地图,空间分辨率约为 6.3 公里,时间分辨率为 2.5 秒,通过俄罗斯 Zvezda 模块中面向天底的紫外线透明窗口观察我们的星球。该仪器于 2019 年 8 月 22 日从拜科努尔航天发射场发射,其光学系统采用两个菲涅耳透镜和一个焦面,焦面由 36 个多阳极光电倍增管组成,每个光电倍增管有 64 个通道,总共 2304 个通道,具有单光子计数灵敏度,总视场为 44 ◦。Mini-EUSO 还包含两个辅助摄像头,用于补充近红外和可见光范围内的测量。在本文中,我们描述了该探测器并展示了运行第一年观察到的各种现象。
