hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:SnO 2 基钠离子电池在钠化/脱钠过程中通常会出现容量衰减较快的问题,这是由于Sn的聚集和裂解以及Na 2 O的不可逆形成造成的。针对这一问题,我们设计了一种基于微波等离子体工艺制备的三元SnO 2 @Sn核壳结构,修饰于氮掺杂石墨烯气凝胶上(SnO 2 @Sn/NGA)。转化成的Na 2 O可以防止Sn的团聚,从而在循环过程中稳定结构。Na 2 O与Sn之间的紧密接触确保了Na+离子向Sn核的扩散,并可逆地转化为Sn SnO 2 。此外,等离子体对NGA的脱氧作用提高了其石墨化程度和电导率,从而大大提高了电极的倍率性能。结果,SnO 2 @Sn/NGA负极在100 mA g -1 时表现出448.5 mAh g -1 的高首次放电容量。重要的是,这种独特的纳米混合电极设计可以扩展到锂和钠离子电池的先进阳极材料。
摘要。三元锂电池(TLB)和磷酸锂电池(LIPB)是当前电池市场中两种流行的电池类型。他们在性能和应用领域中具有自己的优势和缺点。通过分析两种类型的电池的结构,性能和应用,可以看出,TLB的阳极是具有高能量密度,强大的快速充电能力和出色的低温放电性能的八面体结构。阳极材料中镍,钴和锰的不同比率适用于多种未使用的场合。但是,TLB的高温稳定性很差,在高温下很容易发生热失控,并且它们的循环寿命相对较短。LIPB以其高安全性,较长的周期寿命和相对较低的成本而闻名。其独特的橄榄石晶体结构和稳定的P-O共价键具有出色的热稳定性,即使在高温下,电池也不容易分解。LIPB的缺点主要反映在其较低的能量密度和低温放电性能中。结合两种材料的优势来开发具有高能量密度和高安全性的新电池材料将是未来的重要研究方向。
硅稳定的同位素比(表示为δ30Si)在生物二氧化硅中已被广泛用作海洋和湖泊环境中过去和现在的生物地球化学循环的代理,尤其是营养利用重建。对出版趋势的分析表明,在过去五年中,δ30Si在第四纪科学问题上的应用大幅下降。同时随着δ30SI代理应用的减少,我们正在了解更多有关其复杂性的信息:扩大的工作是突出了用于应用基于δ30Si的偏见的偏见,警告或并发症,用于沉积物记录。这些包括物种特异性硅同位素分馏因子的演示(即“重要效应”)或Fe或其他痕量金属影响硅同位素分馏的潜力。其他人推断出生物二氧化硅溶解的潜力改变了初始δ30Si值,或者通过早期的成岩化过程质疑初始δ30Si的保存。另一个受到更多关注的挑战是围绕将δ30Si值解散到反映生物逻辑生产力的信号中,并反映了由全系统和/或循环变化驱动的溶解硅δ30Si的变化。最后,许多研究集中在分析困难上,尤其是在样本制备过程中,与实现和证明污染物的无污染物二氧化硅有关。这些挑战使我们认为第四纪科学界正在远离硅同位素代理,因为他们对其可靠性和实用性失去了信心。在此关注硅藻 - 湖泊和海洋中的主要生物启示剂 - 我们合成了理解基于δ30SI的差异和警告的进展,以回答是否保证了基于δ30Si的基于δ30Si基于δ30Si的季节。我们建议,通过一些简单的步骤可以容易实施,并且随着关键知识差距的缩小,没有理由相信硅同位素在第四纪科学中没有任何希望的未来。
多巴胺是体内重要的神经递质,与许多神经退行性疾病密切相关。因此,多巴胺的检测对于诊断和治疗疾病,筛查药物以及相关致病机制的解散至关重要。然而,体内多巴胺的低浓度和基质的复杂性使多巴胺具有挑战性的准确检测。在此,电化学传感器是基于三维PT纳米线,二维MXENE纳米片和三维多孔碳组成的三元纳米复合材料构建的。PT纳米线由于丰富的晶界和高度不足的原子而表现出极好的催化活性。 MXENE纳米片不仅促进了PT纳米线的生长,而且还提高了电导率和亲水性。多孔碳有助于诱导多巴胺在电极表面上的显着吸附。在电化学测试中,三元纳米复合材料的传感器可实现多巴胺(S/n = 3)的超敏感检测,其检测低(LOD)为28 nm,令人满意的选择性和出色的稳定性。此外,该传感器可用于在血清中检测多巴胺,并原位监测从PC12细胞中释放多巴胺。可以利用这种高度敏感的纳米复合材料传感器来原位监测细胞水平的重要神经递质,这对于相关的药物筛查和机械研究具有重要意义。
摘要 - 由于技术的快速发展和开发,电子系统设计中的微型化已变得不可避免。由于较小的传热表面,热通量密度大大增加了热通量密度,因此对热管理能力提出了挑战。电子冷却中采用纳米流体似乎是实现更好的热量耗散的另一种方法。这项研究探讨了三元杂化纳米流体的可行性:Al 2 O 3:Sio 2在水中浓度不同的水中和混合物比例的水中,在蛇形冷却板中。在这项研究中,研究了0.01%的GO + Al 2 O 3:SIO 2,0.006%GO + Al 2 O 3:SiO 2和0.008%GO + Al 2 O 3:SIO 2的混合比为10:90和20:80(Al 2 O 3:Sio 2)。结果表明,与基础流体相比,纳米流体的0.01%GO + Al 2 O 3:SIO 2(10:90)纳米流体显示出最高增强的传热系数,高1.1倍。随后是0.008%GO + Al 2 O 3:SIO 2(10:90)和0.006%GO + Al 2 O 3:SIO 2(10:90),与基础流体相比,连续增强了1.03次和0.87倍的热传递系数增强。在混合比率的期限内,以10:90(Al 2 O 3:Sio 2)的表现高于20:80。为了评估采用的可行性,进行了优势比(AR)来测量热传递增强和压降效应。AR分析表明,在较低的雷诺,RE数字区域,0.01%GO + Al 2 O 3:SIO 2(10:90)三元杂交纳米流体被证明是最可行的,这是最可行的,这是由于热传递增强的压力较高。
1 Liggins Institute,新西兰奥克兰大学2分子医学与病理学,新西兰奥克兰大学,新西兰3遗传健康服务3遗传健康服务局,奥克兰TE TOKA TUMAI,TE TOKA TUMAI,TE TOKA TUMAI,4 Starship儿童健康澳大利亚墨尔本6墨尔本大学医学,牙科和健康科学学院,澳大利亚墨尔本大学7诊断遗传学,病理学和实验室医学系,TE TOKA TUMAI,奥克兰 *这些作者为这项工作做出了同样的贡献。 ⱡ对应作者:justin.osullivan@auckland.ac.nz1 Liggins Institute,新西兰奥克兰大学2分子医学与病理学,新西兰奥克兰大学,新西兰3遗传健康服务3遗传健康服务局,奥克兰TE TOKA TUMAI,TE TOKA TUMAI,TE TOKA TUMAI,4 Starship儿童健康澳大利亚墨尔本6墨尔本大学医学,牙科和健康科学学院,澳大利亚墨尔本大学7诊断遗传学,病理学和实验室医学系,TE TOKA TUMAI,奥克兰 *这些作者为这项工作做出了同样的贡献。ⱡ对应作者:justin.osullivan@auckland.ac.nz
环形翅片是一种特殊的机械传热装置,其径向变化,经常用于应用热工程。在工作装置中添加环形翅片可增加与周围流体接触的表面积。翅片安装的其他潜在领域包括散热器、发电厂热交换器,并且它在可持续能源技术中也发挥着重要作用。本研究的主要目的是引入一种有效的环形翅片能量模型,该模型受热辐射、磁力、导热系数、加热源的影响,并添加了改进的 Tiwari-Das 模型。然后,进行数值处理以获得所需的效率。从结果可以看出,通过加强 α 1 、α 2 和 γ 1 的物理强度以及使用三元纳米流体使其效率更高,翅片效率显著提高。添加加热源 Q 1 使翅片效率更高,辐射数更有利于冷却它。在整个分析过程中观察到三元纳米流体的作用占主导地位,并使用现有数据验证了结果。
摘要:我们报告了计算预测的平面外化学秩序的过渡金属硼,标记为O -mab相,TA 4 m'sib 2(m'= V,Cr)和结构上等效的固体固体溶液mob a相2。使用构成元素的固态反应烧结制备硼化物相。高分辨率扫描透射电子显微镜以及粉末X射线衍射模式的rietveld细化表明,合成的O-MAB阶段TA 4 CrSIB 2(98 wt%纯度)(98 wt%纯度)(ta 4 vsib 2(81 wt%纯度)具有化学秩序(81 wt%纯度),在TA上具有16 l TA的位置,并在16 l的位置中cr ca and ca c cr ca c cr ca c cr ca c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c cr and c cr the 4 c. (46 wt%纯度)得出结论以形成无序的固体溶液。密度功能理论(DFT)计算来研究动态稳定性,弹性特性和电子密度状态,证实了稳定性并建议基于CR和MO的硼化物比基于V和NB的硼化物更稳固。■简介
摘要。libs是一种能量存储设备,具有高能量密度,没有记忆效果,良好的安全性能和许多周期的优势;它被广泛用于国内外许多科学和技术领域。随着使用锂离子电池的大规模增加,废料的量也增加了。为了更好地实现资源回收,节能和减少排放,有必要研究一系列新技术以恢复废物电池。这篇评论主要介绍了三元电池的废极材料(LinixCoymn1-X-YO2)的恢复过程,并进行了资源回收。内容描述了回收过程的三个主要链接。第一个链接引入了废物三元电池的预处理。第二个链接分析了回收废物三元电池的阴极材料的当前方法。分析了每种方法的优点和缺点后,详细介绍了湿回收的过程。这也是在此阶段回收废物电池的最常用方法。最后一个链接描述了阴极材料的再生过程。