摘要:靶向蛋白质降解已成为一种抗癌替代疗法,与传统抑制剂相比具有多种优势。新型降解药物提供了不同的治疗策略:它们可以通过向细胞外蛋白质添加特定部分来穿过磷脂双层膜。另一方面,它们可以通过生成 E3 连接酶的三元复合物结构来有效改善降解过程。在此,我们回顾了基于 TAC 的技术 (TACnologies) 的当前使用趋势,例如蛋白水解靶向嵌合体 (PROTAC)、光化学靶向嵌合体 (PHOTAC)、CLICK 形式的蛋白水解靶向嵌合体 (CLIPTAC)、自噬靶向嵌合体 (AUTAC)、自噬体束缚化合物 (ATTEC)、溶酶体靶向嵌合体 (LYTAC) 和去泛素酶靶向嵌合体 (DUBTAC),在实验开发及其在临床应用方面的进展。
使用量子三级系统或量子三元组作为基本单位来处理量子信息是当代基于量子比特的架构的替代方案,具有提供显著计算优势的潜力。我们利用两个 transmon 的第三能量本征态展示了一个完全可编程的二元组量子处理器。我们开发了一个参数耦合器,以在九维希尔伯特空间中实现出色的连接性,从而实现二元组门的高效实现。我们通过实现 Deutsch-Jozsa、Bernstein-Vazirani 和 Grover 搜索等几种算法来描述我们的处理器。我们的硬件高效协议使我们能够证明 Grover 放大的两个阶段可以提高具有量子优势的非结构化搜索的成功率。我们的研究结果为使用 transmon 作为通用量子计算机的构建块来构建完全可编程的三元量子处理器铺平了道路。
细胞资源在细菌蛋白质中的分布已通过现象学生长定律量化。在这里,我们描述了一种补充性的 RNA 组成细菌生长定律,该定律源于细胞资源在核糖体和三元复合物中的最佳分配。预测的 tRNA/rRNA 比率随生长速度下降与实验数据在定量上一致。它的调节似乎部分是通过染色体定位来实现的,因为 rRNA 基因通常比 tRNA 基因更靠近复制起点,因此在更快的生长速度下其基因剂量会越来越高。在大肠杆菌中,在最高生长速度下,基于染色体位置的 tRNA/rRNA 基因剂量比几乎与观察到的、理论上最佳的 tRNA/rRNA 表达比相同,这表明染色体排列已经进化到有利于这种条件下两种类型基因的最大转录。
1. E. Muthu Kumar、T. Manjari 和 K. Ramamurthy。(2020 年)。“低水泥含量 AAC 二元、三元和四元混合物用作砌体单元的性能研究。”《砌体国际杂志》,国际砌体学会 33(2),36–63。2. T. Manjari 和 K. Ramamurthy (2023),“固化方法对矿山覆盖层基地质聚合物骨料性能的影响。”《建筑工程杂志》,第 -71 卷,106502,ISSN 2352-7102。3. T. Manjari、V. Manoharan 和 K. Ramamurthy (2023),“通过制粒生产骨料时有效利用矿山覆盖层土壤。”建筑与建筑材料杂志,第 -407 卷,133408,ISSN 0950-0618。研讨会 TCL2 青年研究员研讨会 2023 年 1 月 30 日至 2 月 3 日 IITM 印度 |12/30 国际决赛入围者 | 演讲、海报和视频比赛
生物质衍生化学品的氢化对于生产生物燃料和增值化学品具有重要意义。生物质还原的热化学过程通常使用氢气作为还原剂,在高温和高压下进行。本文,作者研究了 5-羟甲基糠醛 (HMF) 直接通电还原为生物聚合物前体 2,5-双(羟甲基)呋喃 (BHMF)。注意到先前关于这种转化的报告中电流密度有限,因此研究了一种由三元金属纳米树枝状晶体与阳离子离聚物混合而成的混合催化剂,后者旨在提高局部 pH 值并促进表面质子扩散。该方法在使用专为 p-d 轨道杂化设计的 Ga 掺杂 Ag-Cu 电催化剂实施时,可控制对 BHMF 的选择性,在 100 mA cm −2 时实现 58% 的法拉第效率 (FE) 和 1 mmol cm −2 h −1 的生产速率,后者的速率与之前最好的报告相比翻了一番。
图1:捕获NeoSurface属性以识别接口站点和绑定伙伴。A.计算配体 - 蛋白质络合物的几何特征,包括分子表面表示(MSM),水疗评分,质子供体/受体和泊松玻璃托型静电仪。表面特征在描述符(也称为“指纹”)中进行了矢量,并被Masif-Neosurf用于界面倾向预测或蛋白质伴侣搜索。然后使用含配体的指纹来在补丁数据库中找到互补的指纹。B.在已知三元复合物和200个诱饵的基准数据集上使用MASIF-NEOSURF进行排名预测。在相应的小分子配体的存在(橙色)和不存在(蓝色)的情况下,进行了补充伴侣搜索。c-d。与一组随机的贴片对准(灰色)
引入或加强两种蛋白质之间的复合形成具有调节大量生物学过程的潜力,从而提供了可药物靶向空间的主要增加。(P1)复合诱导剂或稳定剂包括分子胶质,这些胶水抑制了复合物中一种蛋白质的功能,以及不同的异性功能化合物,可介导靶蛋白的翻译后修饰的调节或通过蛋白酶体或Lysososes中的蛋白酶降解。蛋白水解靶向嵌合体(Protac)是异性功能的化合物,该化合物由通过连接器连接到另一个结合E3泛素连接酶的靶蛋白的配体组成。(p2)protac诱导的三元复合物形成导致蛋白酶体泛素化和随后降解靶蛋白。大多数Protac都基于Cereblon(CRBN)或Von Hippel-Lindau(VHL)E3 Gimase配体。(p3)
摘要。已经开发了ECHAM5/MYSY AT- MOSPHER化学模型(EMAC)的子模型PSC,以模拟极性平流层云的主要类型(PSC)。子模型中超冷三元溶液(STS,1B PSC)的参数化基于Carslaw等人。(1995b),在Marti和Mauersberger上模拟冰颗粒(2型PSC)的热力学方法(1993)。存在硝酸三水合物(NAT)颗粒(1A型PSC)的形成两个不同的参数。首先是基于Hanson和Mauersberger(1988)的瞬时热力学方法,第二个是新的,并借助于Carslaw等人的表面生长因子来考虑NAT颗粒的生长。(2002)。可以在子模型中选择此NAT参数之一。本出版物解释了子模型PSC的背景和使用子模型的使用,目的是模拟EMAC中的现实PSC。
摘要:高效的光能转换在很大程度上取决于光生载流子的累积级联效率。空间异质结对于定向电荷转移至关重要,因此具有吸引力,但仍是一个挑战。本文展示了一个系统中的空间三元钛缺陷 TiO 2 @碳量子点@还原氧化石墨烯(表示为 V Ti @CQDs@rGO)表现出电荷的级联效应,并在光电流、表观量子产率和光催化(例如水分解和 CO 2 还原产生 H 2 )方面表现出显著的性能。构建中的一个关键方面是 Ti 空位和纳米碳在空间内外异质结方面的技术不合理连接。在原子/纳米尺度上提出新的“空间异质结”概念、特征、机理和外延,阐明合理异质结的生成以及级联电子转移。关键词:钛空位、空间异质结、级联效应、海水分解、二氧化碳还原
曾经假定需要完全精确的计算以获得深入NNS(DNN)的准确结果。最近,研究人员确定了这些模型的较低精度,量化甚至三元或二进制变体可以使用计算资源的一部分来达到适当的精度水平。这些量化的NN(QNN)现在可以使用较低的功率,最小资源,嵌入式芯片(SOC)和FPGA进行实施。sec。3捕获了核心的学习,差距和机会,从QNN文献中进行了进一步的创新。使用卷积NNS(CNN)实施的模式识别算法非常适合太空探索和无人驾驶飞机,并且可以使用这些应用程序使用来基于捕获的图像来识别和分类对象[2]。由于其低成本,低功率消耗和灵活性,FPGA提供了有效实施NNS
