▶ 合作伙伴- McMurtry 发布采用 21700 系列电池的 Spéirling PURE 公路版 ▶ 领先市场的超高功率电池 INR-18650-P30B 上市 ▶ 合作伙伴- Archer Aviation 的 Midnight eVTOL 获得 FAA 特别适航证书 ▶ Molie Quantum Energy Corporation 开始量产运营,年产能目标为 1.8 GWh。 ▶ Molicel 和加拿大总理共同宣布在温哥华建设全球最大的高性能三元锂电池电芯工厂。该工厂旨在成为世界上第一个使用 100% 绿色电力的工厂。
•NX-5948在4(DC 50 = 0.16 nm)和24小时(DC 50 = 0.03 nm)时促进WT BTK的有效降解•获得的抵抗突变减少或废除抗抗增殖物的抗增殖性,以抑制BTK抑制剂的抗抑制作用,并抑制btk的抑制作用,以抑制btk的抑制作用,以抑制btk的抑制作用,以抑制btk的活动。增殖。活性位点中的单个氨基酸变化通常足以显着降低目标占用率。•与以占用驱动的药理学相比,靶向蛋白质降解器采用事件驱动的药理学,诱导具有E3连接酶的三元络合物来促进靶标泛素化。此外,靶蛋白与E3连接酶之间的其他相互作用可以提高三元络合物相对于二进制复合物的稳定性。•NX-5948诱导BTK和CRBN之间的正合作关系,并保留了降解C481S,V416L,T474I和L528W突变体BTK的能力,无论观察到的NX-5948对V4116L和L5528的二进制结合亲和力丧失。•NX-5948显示出与已发表的BTK降解器相比,新型BTKI抗性突变的覆盖范围,特别是在T474i和V416L突变的背景下。•抑制剂和降解器对TMD8细胞上CD86表达的下调与NX-5948的抗增殖作用密切相关。•NX-5948下调突变体TMD8细胞上的CD86表达,并保留抑制具有C481S,V416L,T474I和L528W突变的细胞增殖的能力•NX-5948在蛋白质组学评估中高度选择性地选择了BTK降解;在原代T细胞,TMD8细胞,NX-5948治疗的MM-1R细胞中未鉴定出明显的直接外靶标•NX-5948的1A/B期试验正在进行复发或难治性B细胞恶性肿瘤的患者(NCT05131022)。
2 从 EMC 角度看 D 类放大器 9 2.1 D 类放大器基础知识 ......................。。9 2.1.1 功率级。。。。。。。。。。。。。。。。。。。。。......10 单端功率级 [21, 22]: .........10 差分功率级 [16, 23]: ......。。。。10 2.1.2 调制。。。。。。。。。。。。。。。。。。。........12 2.1.2.1 脉冲宽度调制 (PWM) .......12 2.1.2.2 差分 D 类放大器的 PWM ......14 二元调制: ..................14 三元调制: ....................15 2.1.2.3 自激振荡调制 ........。。。。。。。。16 2.2 D 类放大器的 EM 发射 ...................18 2.2.1 输出轨的 EMI ......................18 2.2.2 供电轨处的 EMI .......。。。。。。。。。。。。。。。20 2.2.3 EMC 解决方案。。。。。。。。..................22 2.3 表征 D 类放大器 .....。。。。。。。。。。。。。。24
2 从 EMC 角度看 D 类放大器 9 2.1 D 类放大器基础知识 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 D 类放大器的 EM 发射 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 D 类放大器的特性分析 . . . . . . . . . . . . . . . . . . . . . . . 24
图S3。 三元地块描述了细菌和真菌DNA的基于真菌和真菌DNA或基于RNA的OTU在植物土壤实验结束时土壤处理之间的分布(灰色圆圈),表明基于DNA的或基于RNA的基于DNA或基于RNA的富集或激活的OTU,或者是由T.绿色圆圈或通过T. eestivum(blue cirdie)(或蓝色圆形),或在blue coundere(blue cirdiean),或者在blue counder coundere coundere coundere counce,或者在blue councered counder counder counder(blue cirdie),或depleta。或通过T. aestivum(浅蓝色),两种植物(橙色)富集或激活的Otus以及两种植物(黄色)耗尽或抑制的OTU。 对总细菌和真菌的丰度(基因拷贝数)进行了此分析。 每个圆圈描绘了一个单独的OTU,其位置取决于指示的方式对丰度的贡献。 圆的大小反映了OTU的相对丰度。图S3。三元地块描述了细菌和真菌DNA的基于真菌和真菌DNA或基于RNA的OTU在植物土壤实验结束时土壤处理之间的分布(灰色圆圈),表明基于DNA的或基于RNA的基于DNA或基于RNA的富集或激活的OTU,或者是由T.绿色圆圈或通过T. eestivum(blue cirdie)(或蓝色圆形),或在blue coundere(blue cirdiean),或者在blue counder coundere coundere coundere counce,或者在blue councered counder counder counder(blue cirdie),或depleta。或通过T. aestivum(浅蓝色),两种植物(橙色)富集或激活的Otus以及两种植物(黄色)耗尽或抑制的OTU。对总细菌和真菌的丰度(基因拷贝数)进行了此分析。每个圆圈描绘了一个单独的OTU,其位置取决于指示的方式对丰度的贡献。圆的大小反映了OTU的相对丰度。
深度卷积神经网络 (DNN) 取得了显著成功,广泛应用于多种计算机视觉任务。然而,其庞大的模型规模和高计算复杂度限制了其在 FPGA 和 mGPU 等资源受限的嵌入式系统中的广泛部署。作为两种最广泛采用的模型压缩技术,权重剪枝和量化分别通过引入权重稀疏性(即强制将部分权重设为零)和将权重量化为有限位宽值来压缩 DNN 模型。尽管有研究尝试将权重剪枝和量化结合起来,但我们仍然观察到权重剪枝和量化之间的不协调,尤其是在使用更激进的压缩方案(例如结构化剪枝和低位宽量化)时。本工作以 FPGA 为测试计算平台,以处理单元(PE)为基本并行计算单元,首先提出一种 PE 级结构化剪枝方案,在考虑 PE 架构的同时引入权重稀疏化,并结合优化的权重三元化方法,将权重量化为三元值({- 1 , 0 , +1 }),将 DNN 中主要的卷积运算从乘法累加(MAC)转换为仅加法,同时将原始模型(从 32 位浮点数到 2 位三元表示)压缩至少 16 倍。然后,我们研究并解决了 PE-wise 结构化剪枝与三元化之间的共存问题,提出了一种自适应阈值的权重惩罚剪枝 (WPC) 技术。我们的实验表明,我们提出的技术的融合可以实现最佳的 ∼ 21 × PE-wise 结构化压缩率,而 ResNet- 18 在 ImageNet 数据集上的准确率仅下降 1.74%/0.94% (top-1/top-5)。
方程是通过将其减少到可以解决的方程式来获得的,该方程是通过采用合适的转换和应用分解方法来解决的。关键词:三元立方,非均匀的立方,整数解决方案简介数字理论的有趣领域之一是Diophantine方程的主题,它使业余爱好者和数学家都着迷和动机。众所周知,在仅需要整数溶液的两个或多个未知数中,双方方程是多项式方程。很明显,多菲甘丁方程在数学的发展中发挥了重要作用。近年来,毒液方程式的理论很受欢迎,为专业人士和业余爱好者提供了肥沃的基础。除了已知的结果外,这还充满了未解决的问题。尽管可以简单而优雅地说明其许多结果,但它们的证明有时很长而复杂。没有关于一般方法的统一知识。如果可以解决该问题是否可解决,并且在解决性的情况下,则认为一个养分问题被认为是解决的,以展示所有满足问题中规定要求的整数。成功完成所有满足问题要求的整数的成功完成了数字理论的进一步进步,因为它们在图理论,模块化理论,编码和加密,工程,音乐,音乐等领域提供了良好的应用。整数在自然科学的演变中反复发挥了至关重要的作用。整数理论为现实世界中的问题提供了答案。众所周知,同质或非均匀的二芬太汀方程激起了许多数学家的利益。值得观察到立方双磷酸方程式属于用于密码学中使用的椭圆曲线理论。特别是,可以参考三个未知数和四个未知数的立方方程[1-10]。本文的主要目的是向有趣的三元非均匀的立方>展示不同的整数解决方案