必须同时开发具有成本效益,高效且稳定的储能技术,以使可再生能源的可持续性和稳定应用成为现实。事实证明,电力储能(EES)系统在存储从可再生能源为实用应用中产生的电力的电力方面有一个巨大的希望。[9–17]如图1所示,可以将EES系统简要分类(通过以锂离子电池为例),超级电容器和金属离子混合电容器,它们具有不同的特性。众所周知,由于其高能量密度,锂离子电池是电力存储和输送应用的主要EES系统之一。但是,锂离子电池在可再生能源存储和交付中的大规模应用受到锂资源的高成本以及锂离子电池本身的不受欢迎的特征(例如有限的循环寿命和低功率密度)。[18-21]此外,超级速度(也称为电化学电容器)是EES系统的另一种必需类型。它具有高功率密度和较长的周期寿命,但与锂离子电池相比,能量密度不足。[22–24]为了同时实现高能和功率密度,金属离子杂种电容器的概念已经出现。[25–27]和作为概念证明,将锂离子杂种电容器(LIHC)用纳米结构的Li 4 Ti 5 O 12作为负电极材料制成,并活化的碳为非水晶中的正电极材料。[28]提出了金属离子杂种电容器,以有效地结合了蝙蝠和超级电容器的优势,同时最大程度地提高了功率和能量。此外,金属离子混合动力电容器可以消除电池的内在缺点,例如安全性差和严重的自我放电,同时继承了超级电容器长期循环稳定性的优点。,重要的是要注意,这些优点并不意味着金属离子混合动力电容器可以替换电池和超级电容器,尤其是在当前阶段,因为金属离子混合电容器仍然面临几个挑战,尤其是关于可实现的能量和功率密度。在不同类型的金属杂种电容器中,LIHC是具有商业化产品的相对成熟的技术。但是,LIHCS的致命缺点是锂资源的不均匀分配和高成本,这导致了
锂离子电池是当今电力平台的重要组成部分。锂离子电池在所有便携式电子设备、电动和混合动力汽车以及电网规模的储能系统中都有广泛的应用。[4] 但由于电池行业需要近 50% 的可用锂资源,因此锂离子电池能否大规模生产用于电网应用尚不确定。[5f] 此外,锂离子在非质子电解质中的电导率有限以及安全性较差也可能对其大规模利用造成问题。这些缺点促使研究人员寻找替代锂离子电池的新型储能技术,其中可充电金属空气电池成为一种有前途的新型电能存储技术(图 1)。通常,金属空气电池(Li 或 Na)比锂离子电池具有更高的理论比能,这使得金属空气电池系统对混合动力和混合动力电动汽车具有吸引力和实用性。 [6] 以金属为阳极、氧为阴极活性材料的电化学电力装置具有最高的能量密度,因为后者不存储在装置内部,而是可从环境中获取。锂空气电池(LAB)的理论比能量与汽油的理论比能量相当。[5c,7] 空气阴极性能限制了电池容量,危及 LAB 技术的商业成功。首先,无论是碱性还是酸性水性电解质,在阴极反应过程中都会消耗溶剂。其次,由于孔口/开口的堵塞导致放电不完全。[8] 因此,提高 LAB 性能的可能途径之一是阴极材料结构,[9] 它可以保持活性锂离子和氧气的传输,并且可以填充大量氧还原反应(ORR)的产物而不会堵塞孔隙。在燃料电池的气体扩散电极 (GDE) 领域中,双孔材料有望提高能量容量。[10] 第三,空气阴极性能下降。空气阴极提供大部分电池能量,因此电池电压降最大。[11] 放电过程中 LiO 2 的积累产生了混合产物,充电时的高电压导致溶剂分解,同时过氧化锂也发生还原。[12] 氧溶解度和扩散速率成为影响电池能量容量的关键因素。使用氧溶解度高和氧扩散率高的电解质可提高阴极容量。[8,13]
电池是对完整电动汽车(EV)的成本和环境足迹产生重大影响的组件。因此,有强大的动力可以最大化其利用率。用法限制由电池管理系统(BMS)执行,以确保安全操作并限制电池降解。限制往往是保守的,以说明电池状态估计的不确定性以及由于老化而导致的电池特性变化。为了提高利用率,需要对衰老敏感的电池管理。这是指管理策略,该策略是a)根据其状态调整电池期间的寿命,b)根据特定应用程序的要求平衡利用率和退化之间的权衡。在最新的电池安装中,仅测量了三个信号;电流,电压和温度。但是,必须估计的其他州(例如其最先进的(SOC)或局部浓度和潜力)对电池的行为进行了政府。因此,BMS依靠模型来估计状态并执行控制动作。为了实现点a)和b),必须在船上更新用于状态估计和控制的模型。更新的型号还可以实现诊断电池的目的,因为它反映了电池老化电池的变化。本论文研究了从操作EV数据中识别电化学和经验蝙蝠模型的鉴定。此外,IT研究了基于模型的最佳和自适应快速充电策略。工作分为四个主要研究。1)在驾驶数据上鉴定了经验线性参数变化(LPV)动态模型。模型参数是作为测得的温度,电流幅度和估计的开路电压(OCV)的功能提出的。处理电池电压响应的时间尺度差异,采用了连续的时间系统识别。我们得出的结论是,与离散和时间不变的对应物相比,所提出的模型具有较高的预测能力。2)对高阶电化学模型的参数进行了全局灵敏度分析。用实际电动汽车的测量电流曲线用作输入,并且评估了参数对建模细胞电压和其他内部状态的影响。研究表明,为了激发所有模型参数,需要高电流率,较大的SOC跨度以及更长的电荷或放电期的输入。这仅在电动卡车的数据集中存在,该电池组很少。来自带有更多包装(电动总线)和有限的SOC操作窗口(插电式混合动力卡车)的车辆的数据集激发了更少的模型参数。3)我们还投资了设计充电电流以增加其有关模型参数的信息内容,而不是使用驱动数据来参数化模型。这是在频域中作为最佳实验设计问题的提法。基于等效电路模型(ECM)状态优化了对衰老敏感的快速充电过程。最后,结合最佳快速电荷和
人们一直认为,复杂的开放式任务可能捕捉到额叶“执行”功能障碍的某些方面,而这些方面在传统的神经心理学测试中受到的限制较多。在一项开创性的研究中,Shallice 和 Burgess (1991) 引入了两项旨在模仿日常问题解决的开放式特征的任务。在 6 要素任务中,患者必须在 15 分钟内分配六个不同的任务,可以随时自由切换任务,但要遵守一些有关任务顺序和时间分配的额外规则。在多项差事任务中,患者在商店街上进行一系列活动,同样要组织整个活动以遵守一系列规则和要求。 Shallice 和 Burgess (1991) 研究发现,三名额叶患者在这些任务中表现出严重障碍,尽管他们在一系列更传统的执行测试中表现良好,例如威斯康星卡片分类(Milner,1963)、言语流畅性(Benton,1968)和 Trails B(Reitan,1955)。在之前的研究中,我们调查了执行测试和流体智力之间的联系,后者用标准测试来衡量,例如文化博览会(人格和能力测试研究所,1973)。对于许多常规测试,包括卡片分类、流畅性和 Trails,几组患者的表现缺陷很大程度上可以用流体智力的丧失来解释;一旦流体智力被部分排除,患者和对照组的表现大致相同(Roca 等人,2010 年、2012 年、2013 年;Roca 等人,2014 年)。流体智力缺陷与分布式皮质“多需求”或 MD 网络的损伤有关,该网络包括外侧额叶、背内侧额叶、岛叶和顶叶皮质的特定区域(Woolgar 等人,2010 年;Woolgar、Duncan、Manes 和 Fedorenko,2018 年;Barbey 等人,2012 年;有关白质连接的证据,请参阅 Gl? ascher 等人,2010 年)。卡片分类、流畅性和 Trails 等测试中的表现可能在很大程度上反映了该网络的功能。对于一个更加开放的任务,即在更现实的环境中模仿 Shallice 和 Burgess (1991) 的六元素任务的酒店任务,结果有所不同(Manly 等人,2002)。对于酒店任务,我们一再发现,表现与流体智力仅有微弱的关系,而部分流体智力并不能消除患者的缺陷(Roca 等人,2010、2012、2013,Roca 等人,2014)。这些发现表明对 MD 功能的依赖性不那么具体。在本研究中,我们使用三个新测试扩展了这些先前的发现,与文化博览会一起对一组皮质不同区域有局部病变的患者进行测试。首先,我们使用了一个与以前的版本相比有所缩短的酒店版本。第二,我们设计了一个新的日常问题解决测试,该测试基于描述现实生活情况及其相关决策的短篇故事。第三,我们设计了一个新的任务切换测试,以模拟“酒店”复杂处理要求的一个方面。人们经常认为,在这个测试中,患者可能无法在各个子任务之间分配时间,因为他们沉浸在一个任务中,忘记了更大的要求,即给所有任务一些时间(Manly 等人,2002 年)。为了研究这种沉浸感是否是自然行为的一个关键因素,我们修改了一个标准的任务切换范式(Rogers & Monsell,1995 年),以操纵任务切换前的时间长度。相比之下,
电池储能融资对欧洲能源转型至关重要 这份 KBRA Europe (KBRA) 报告研究了欧洲大陆和英国当前的电池储能融资方式,以及该行业交易的收入来源和监管环境。 虽然电池储能有望成为欧洲可再生能源转型的重要技术,但金融界在为该行业提供资金方面面临挑战,而且对于该行业如何才能达到充分发挥其潜力所需的规模存在不确定性。 我们认为,开发电池的赞助商、制定可再生能源目标的监管机构和国家政策制定者以及资助开发的融资界之间需要加强合作。 在欧洲和英国能源采购方式发生深刻转变的背景下,这种合作对于最大限度地发挥电池储能的作用是必不可少的。 关键要点 ▪ 鉴于政府要求跟上可再生能源和能源安全的雄心,尤其是考虑到乌克兰-俄罗斯冲突带来的阻力,电池储能将成为关注的焦点。 ▪ 融资技术各不相同,但大多数电池存储交易都是短期融资,考虑到企业风险,而不是纯粹的独立、无追索权。 ▪ 监管在弥合固有商家风险和长期贷款人对可预测现金流的需求之间的差距方面发挥着作用。 ▪ 实现电池存储规模可能需要更多样化的融资,包括长期无追索权银行、机构和资本市场融资。 电池存储是支持能源转型的关键 随着风能和太阳能等传统公用事业规模的可再生能源在能源结构中所占份额越来越大,电池存储(储存过剩能源并在高峰时段放电)的重要性从未如此重要。此外,鉴于当今的地缘政治和经济环境,供应安全的不确定性加剧,天然气价格上涨。这可能会加速对可再生能源的依赖,并导致采取更紧急的行动,以确保有足够的存储。对于许多市场参与者而言,俄乌战争创造了一个机遇之窗,可能催化能源转型,促使政府支持电池存储等新技术。根据国际能源署 (IEA) 的数据,截至 2021 年,全球电池存储容量为 4GW-8GW。考虑到可再生能源目标,IEA 预计电池存储容量到 2025 年需要增加到 148GW,到 2030 年需要增加到 585GW。目前的电池存储容量占每年上线的新增风电和太阳能非调度容量的 1% 到 2%。专家表示,为了跟上目前上线的可再生能源数量,市场需要达到约 100GW。虽然可再生能源发电有多种存储替代方案(例如,与常规能源相比(例如抽水蓄能和氢能),电池储能成为扩大规模和替代化石燃料储能终端的关键竞争者。这是在欧洲和英国不仅寻求短期内减少对俄罗斯能源依赖的途径,也寻求长期和更广泛的方法来减少对化石燃料(包括进口天然气)的依赖的背景下。尽管许多市场评论员都强调了电池储能的光明前景,但 KBRA 指出了一系列挑战,包括:▪ 收入状况通常难以预测,且容易受到市场价格和需求波动的影响。▪ 监管未能充分激励金融界、开发商和用户考虑在足够大的独立或公用事业规模上采用电池储能。▪ 开发电池的赞助商、制定雄心勃勃的可再生能源目标的监管机构和国家政策制定者以及融资界之间缺乏合作。电池储能融资 KBRA 发现,电池储能融资工具存在一个重要区别,即电池是单独融资还是作为投资组合的一部分融资,以及电池是混合项目(公用事业规模的太阳能或风能与电池储能相结合)的一部分融资。我们认为,所部署的融资工具很大程度上取决于支撑运营的收入流的性质。例如,单一资产或资产组合产生的短期收入(这些资产波动较大且完全暴露于价格和电网市场条件)大多是基于发起人的公司风险来融资的。这些资金主要来自专门从事新兴可再生能源技术的私募股权公司以及对此类资产有专门风险限额的银行。相比之下,混合项目通过与信誉良好的交易对手签订商业电力购买协议 (PPA) 吸引了长期承购安排,并且收入流更可预测,但最近▪ 开发电池的赞助商、制定雄心勃勃的可再生能源目标的监管机构和国家政策制定者以及融资界之间缺乏合作。 电池存储融资 KBRA 发现,电池存储融资工具的一个重要区别在于,电池是单独融资还是作为投资组合的一部分融资,以及电池是混合项目的一部分(公用事业规模的太阳能或风能与电池存储相结合)。我们认为,部署的融资工具在很大程度上取决于支撑运营的收入流的性质。例如,单一资产或资产组合产生的短期收入波动大,且完全暴露于价格和电网市场条件,这些收入大多是基于赞助商的企业风险而融资的。这些资金主要来自专门从事新兴可再生能源技术的私募股权公司以及对此类资产有专门风险限额的银行。相比之下,混合能源——通过与信誉良好的交易对手签订商业电力购买协议 (PPA) 吸引了长期承购安排,并且拥有更可预测的收入流——最近▪ 开发电池的赞助商、制定雄心勃勃的可再生能源目标的监管机构和国家政策制定者以及融资界之间缺乏合作。 电池存储融资 KBRA 发现,电池存储融资工具的一个重要区别在于,电池是单独融资还是作为投资组合的一部分融资,以及电池是混合项目的一部分(公用事业规模的太阳能或风能与电池存储相结合)。我们认为,部署的融资工具在很大程度上取决于支撑运营的收入流的性质。例如,单一资产或资产组合产生的短期收入波动大,且完全暴露于价格和电网市场条件,这些收入大多是基于赞助商的企业风险而融资的。这些资金主要来自专门从事新兴可再生能源技术的私募股权公司以及对此类资产有专门风险限额的银行。相比之下,混合能源——通过与信誉良好的交易对手签订商业电力购买协议 (PPA) 吸引了长期承购安排,并且拥有更可预测的收入流——最近
ABRV 名称索引 ABRV 名称索引 ABRV 名称索引 ABRV 名称索引 ABRV 名称索引 844S 844 South River Road G12 EHSB 马健康科学大楼 G10 LYLE Lyle-Porter 大厅 F9 RAWL Jerry S. Rawls 大厅 H7 停车场目录 AACC 亚裔美国人资源和文化中心 F5 ELLT Edward C. Elliott 音乐厅 G6 LYNN Charles J. Lynn 兽医学大厅 G9 REC 朗诵大楼 G7 PGG Grant Street 停车场 H7 ABE 农业和生物工程 F8 FLEX Flex 实验室 D8 MACK Guy J. Mackey 竞技场 G4 RHPH Robert E. Heine 药房大楼 G5 PGGH 研究生院停车场 H8 ADDL 动物疾病诊断实验室 F10 FORD Fred And Mary Ford 餐厅 E4 MANN Gerald D. and Edna E. Mann 大厅 E8 SC斯坦利库尔特大厅 G6 PGH 哈里森街停车场 F9 ADPA 探索公园 A 栋 Aspire D7 FORS 林业大楼 G8 MATH 数学科学大楼 G6 SCHL 海伦 B. 施勒曼学生服务大厅 G5 PGMD 麦克库琴大道停车场 C6 ADPB 探索公园 B 栋 Aspire D8 FPRD 林产品大楼 G8 ME 机械工程大楼 G6 SCHO 舒韦大厦 F1 PGNW 西北大道停车场 H5 ADM 农业创新中心 E11 FRNY Forney 化学工程大厅 G5 MJIS 马丁 C. 吉施克生物医学工程大厅 E8 SCPA 斯莱特表演艺术中心 E4 PGU 大学街停车场 F6 AERO 航空科学实验室(机库 3 号) C10 FWLR 哈里特 O. 和詹姆斯 M. 福勒 Jr. 纪念馆 E7 MMDC 材料管理与配送中心 F11 SIML Holleman-Niswonger 模拟器中心 A10 PGW 伍德街停车场 H8 AGAD 农业管理大楼 G8 GMF 场地维护设施 F11 MOLL Mollenkopf 运动中心 F3 SMLY John C. Smalley 住房和食品服务管理中心。 E6 住房目录 AHF 动物饲养设施 G10 GRIS Grissom Hall H6 MRGN Burton D. Morgan 创业中心 E8 SMTH Smith Hall F8 CARY Franklin Levering Cary Quadrangle F4 AQUA Boilermaker 水上运动中心 E6 GRS 场地服务大楼 E8 MRRT Marriott Hall F7 SOIL 土壤侵蚀实验室 E8 DUHM Ophelia Duhme 宿舍楼 E6/7 AR Armory F6 HAAS Felix Haas Hall F6 MSEE 材料与电气工程 G5 SPUR Tom Spurgeon 高尔夫训练中心 C1 ERHT Amelia Earhart 宿舍楼 D7 ARMS Neil Armstrong 工程学大楼 G4 HAMP Delon 和 Elizabeth Hampton 土木工程学大楼 G5 MTHW Matthews Hall F7 STDM Ross-Ade 体育场 F3 FSTC 中央第一街塔 D7 ASB 机场服务大楼 B11 HANS Arthur G. Hansen 生命科学研究大楼 F8 NACC 美洲原住民教育和文化中心 F5 STEW 斯图尔特中心 G7 FSTE 第一街塔,东部 D7 ASTL 动物科学教学实验室 E8 HEAV Heavilon 大厅 G6 NISW Niswonger 航空技术大楼 C10 TEL 电信大楼 F7 FSTW 第一街塔,西部 D7 BALY 拉尔夫和贝蒂贝利大厅 H6 HERL 赫里克声学 E8 NLSN Philip E.纳尔逊食品科学大厅 G8 TERM 航站楼(2 号机库) B11 GRFN 格里芬宿舍北楼 E6 BCC 黑人文化中心 F6 HGRH 园艺温室 G9 NUCL 核工程大楼 H6 TERY 奥利弗·珀金斯·特里之家 E8 GRFS 格里芬宿舍南楼 E6 BCHM 生物化学大楼 F8 HIKS 约翰·W·希克斯本科图书馆 G7 PAO 包玉刚视觉与表演艺术大厅 G8 TREC 草坪娱乐中心 D5 HLTP 山顶公寓 E2/3 BELL 钟楼 G6 HLAB 赫里克实验室 E8 PEST 农药施用者培训设施 C1 UNIV 大学大厅 G7 HARR 本杰明·哈里森宿舍 D7 BIND 宾德利生物科学中心 D8 HNLY 比尔和莎莉·汉利人类发展研究所 E7 PFEN 大卫·C·芬德勒农业大厅 G7 VA1 兽医动物隔离大楼 1 F9 HAWK George A. Hawkins 大厅 G8 BRES Drew & Brittany Bress 学生运动中心 F3 HOCK Hockmeyer 结构生物学大厅 E9 PFSB 物理设施服务大楼 F11 VA2 兽医动物隔离楼 2 F9 HCRN 荣誉学院宿舍楼北 E6 BRK Birck 纳米技术中心 D8 HORT 园艺楼 G8 PHYS 物理楼 G5 VLAB 兽医实验室动物楼 G10 HCRS 荣誉学院宿舍楼南 E6 BRNG Steven C. Beering 人文教育大厅 F7 HOVD Frederick L. Hovde 行政大厅 G5 PJIS Patty Jischke 早期护理和教育中心 C8 VMIF 兽医隔离设施 G10 HILL Hillenbrand 宿舍楼 D6 BRWN Herbert C. Brown 化学实验室 G6 HRTP 园艺公园谷仓 A6 PMU 普渡大学纪念联盟 H7 VOIN Samuel Voinoff高尔夫馆 D1 MCUT John T. Mccutcheon 宿舍 C7 CHAS Chaney-Hale 科学馆 JNSN Helen R. Johnson 护理馆 G5 PMUC 普渡纪念联盟俱乐部 H7 VPRB 兽医病理学研究大楼 F9 MRDH Virginia C. Meredith 宿舍 D/E6 CL50 1950 级演讲厅 G6 KCTR Krannert 高管教育与研究中心 H8 POAN 家禽科学附楼 F8 VPTH 兽医病理学大楼 G9 OWEN Richard Owen 宿舍 E4 COMP 复合材料实验室 C11 KFPC Kozuch 足球表演中心 F2 POTR AA Potter 工程中心 G6 WADE Walter W. Wade 公用事业厂 G10 PVIL 普渡村 C/D8/10 CREC Cordova 休闲运动中心 E5/6 KNOY Maurice G. Knoy 技术馆 H6 POUL 家禽科学大楼 E8 WALC Thomas S. 和 Harvey D. Wilmeth 主动学习中心 G6 SHLY Frances M. Shealy 宿舍 E6/7 DAUC Dick & Sandy Dauch 校友中心 H8 KRAN Krannert 管理研究生院 H7 PRCE Peirce 大厅 G6 WANG Seng Liang Wang 大厅 G5 SHRV Eleanor B. Shreve 宿舍 D6 DLR 发现和学习研究大厅 E9 KRCH Krach 领导力中心 E6 PRSV 印刷服务设施 F11 WDC Windsor 餐饮广场 E6 TARK Newton Booth Tarkington 宿舍 E4/5 DMNT Clayton W. Dement 消防站 D6 LAMB Ward L.Lambert 体育馆和体育馆 F4 PSYC 心理科学大楼 G6 WDCT Wiley Dinning Court E5 VAWT Everett B. Vawter 宿舍 E6/7 DOYL Leo Philip Doyle 实验室 G9 LCCP 普渡大学拉丁裔文化中心 F5 PUSH 普渡大学学生健康中心 F5 WEST Westwood Manor B5 WARN Martha E. 和 Eugene K. Warren 宿舍 E6/7 DRUG 药物研发中心 F8 LILY Lilly 生命科学馆 F8 PVAB 普渡村行政大楼 D9 WSLR Roy L. Whistler 农业研究馆 G8 WILY Harvey W. Wiley 宿舍 E5 EE 电气工程大楼 G5 LSA 生命科学动物大楼 F8 PVCC 普渡村社区中心 C8 WTHR Richard Benbridge Wetherill 化学实验室 G6 WOOD Elizabeth G. 和 William R. Wood 宿舍 E6/7 EEL 昆虫学环境实验室 G8 LSPS生命科学植物与土壤实验室 F8 PVP 普渡村幼儿园 C8 YONG Ernest C. Young 大厅 H8 414R 414R 公寓 F5 EHSA 马健康科学附楼 G10 LSR 生命科学靶场 F8 RAIL 美国铁路大厦 G6 LWSN Richard & Patricia Lawson 计算机科学大厦 F6 RALR Ross-ade 体育场更衣室 F4
