摘要:上一届政府间气候变化专门委员会 (IPPC) 评估报告强调,减少二氧化碳排放的行动迄今为止未能有效实现 1.5 C 限制,需要采取激进措施。废弃生物质的升级、电力到 X 范式和氢等创新能源载体等解决方案可以为向低碳能源系统的过渡做出有效贡献。在此背景下,本研究的目的是通过研究厌氧消化与热化学转化过程的创新整合优势来改进湿残余生物质的氢气生产过程。此外,该解决方案集成到由电网和光伏电站 (PV) 组成的混合电源中,并由热能存储 (TES) 系统提供支持。通过 Simulink/Simscape 模型仔细评估了工厂的性能及其输入能源需求(将电力需求分为光伏系统和国家电网)。初步评估显示,该工厂的氢气产量表现良好,达到 5.37% kg H2 /kg 生物质,远高于单一工艺的典型值(约 3%)。这一发现表明生物和热化学生物质增值路线之间存在良好的协同作用。此外,热能存储显著提高了转化工厂的独立性,几乎将电网的能源需求减少了一半。
图1显示了构建的一般几何形状。激光焊缝在电线馈周周围有三个梁同心。挑战相关的测量值将包括残留应力/应变成分,在构建机器上拔掉后的底板偏转以及在构建过程中的底板温度。在构建过程中,激光功率保持恒定,但是进料速度和行进速度变化以产生良好的几何形状。激光校准数据,电线和底板材料组成,广泛的构建信息,包括编程的进料速率和旅行速度(G代码)以及一些热电偶数据。我们将不提供材料属性数据。
抽象目标干扰素-Alpha是SLE发病机理的重要原因,它诱导了Kynurenine/Throptophan(Kyn/TRP)途径的酶2,3-二氧酶。这会导致Kyn/TRP途径代谢产物,喹啉酸(QA),N-甲基D-天冬氨酸谷氨酸助剂受体(NMDAR)激动剂和kynurencic Acidist(KA),NMDAR抗体机的潜在神经毒性失衡。我们确定了SLE中是否与认知功能障碍(CD)和抑郁症相关的QA/KA比率。方法这项横断面研究包括74名SLE和74个健康对照(HC)受试者。一切都没有神经精神疾病的史。血清代谢产物水平(Kyn,TRP,QA,KA)同时测量认知评估(自动神经心理评估指标(ANAM),2×2阵列),情绪和疼痛,并在SLE和HC之间进行比较。SLE中的多变量建模用于评估与认知性能和抑郁症的代谢产物的关联。结果血清KYN/TRP和QA/KA比率在SLE与HC相比升高(P <0.0001)。SLE在五个ANAM测试中的四项(全p≤0.02)和2×2阵列(p <0.01)中的表现要比HC差,并且抑郁得分较高(p <0.01)。在SLE,升高的QA/KA比率与匹配性能(MTS),工作记忆和视觉空间处理任务(P <0.05)相关。具有QA/KA比率升高的SLE受试者的抑郁几率也略高,但这并没有达到显着性(P = 0.09)。SLE中的多变量建模证实了在考虑潜在的混杂因素时,质量保留量比/ ka比与MTS性能差之间的关联(p <0.05)。结论升高血清KYN/TRP和QA/KA比率确认SLE中的Kyn/TRP途径激活。增加的质量质量/KA比率与认知差差之间的新型关联支持该途径作为SLE介导的CD的潜在生物标志物或治疗靶标的进一步研究。
课程开始和结束日期 2024 年 9 月 23 日 - 2025 年 1 月 3 日 期末考试日期 2025 年 1 月 4 日至 19 日 补充考试日期 2025 年 1 月 25 日至 2 月 2 日 新(初始)注册开始和结束日期 适应大学生活周 2024 年 9 月 18 日至 20 日 学生注册续订开始和结束日期 2024 年 9 月 16 日至 22 日 学费/材料/学费付款日期 2024 年 9 月 16 日至 22 日 学生注册续订开始和结束日期(针对开放教育课程) 2024 年 9 月 16 日至 30 日 学费/材料/学费付款日期(针对开放教育课程) 2024 年 9 月 16 日至 30 日 顾问批准 2024 年 9 月 16 日至 23 日 部门负责人批准 2024 年 9 月 24 日与院系顾问进行面对面会议的日期 2024 年 9 月 25-26 日 学生增减课程和请假开始-结束日期 2024 年 9 月 25-29 日 顾问批准 2024 年 9 月 25-30 日 部门负责人批准 2024 年 10 月 1 日 5(ı),GSS,Univ。非区域课程期中考试日期:2024 年 11 月 18 日至 24 日
热能储存 (TES) 与核能相结合可以成为解决随着太阳能和风能使用范围扩大而出现的能源生产和需求不匹配问题的变革性贡献。TES 可以为核电站创造新的收入,并有助于降低电网的碳排放。作者之前的工作确定了两种将 TES 与核能接口的技术方法。第一种方法称为主循环 TES,在主朗肯动力循环内对 TES 充电和放电。第二种方法称为次级循环 TES 或 SCTES,将 TES 放电至次级动力循环。本研究分析了 TES 在 1050 MW 核电站套利市场中的潜在经济效益。该研究首次对由于使用 TES 而导致的容量系数变化对收入和内部收益率 (IRR) 的影响进行了现实的量化。该分析针对德克萨斯州电力可靠性委员会 (ERCOT) 代表的一家示范性非管制公用事业公司,针对其三年的峰值功率从传统核电站的 120% 到 150% 进行分析。SCTES 始终提供最高的收入和 IRR。随着 TES 的使用增加和电价的变化,收益也会增加。结果提供了对 TES 与核电整合对经济的影响的技术合理理解,并为追求 SCTES 的设计和实施提供了强有力的经济支持。[DOI:10.1115/1.4053419]
需要热能存储 (TES) 来实现低碳供暖,以满足可再生能源发电的供需不匹配,但家用 TES 的采用率很低,主要限于热水箱。当前的评论和研究主要侧重于存储材料的比较,而忽略了系统级别的性能,分析研究往往只关注热水箱,而忽略了正在开发的热存储系统的关键技术发展。因此,本文从材料级到系统级分析研究了 TES 的性能和成本变化,并评估了新兴储热技术的影响。通过模拟不同类型的 TES 材料和不同的系统集成选项,与材料级分析相比,发现 TES 系统的能量密度显著降低,特定成本增加。与温度受限的热泵或太阳能热相比,直接电加热具有更高的工作温度,因此与 TES 集成的潜力更大。在家用供暖技术经济框架中,在各种场景中模拟了 TES 属性。我们发现,即使可以实现非常高的能量密度,热泵的 TES 的经济潜力也是有限的。此外,TES 与热泵结合的首要任务是降低资本成本,尽管目前由于能源危机而产生的高关税确实提高了 TES 的经济可行性。另一方面,对于直接电加热,高能量密度是 TES 最有价值的参数,因为它可以将大量的需求转移到非常低的关税时间,特别是对于低需求住宅,这些住宅的供暖所需的峰值电力可以忽略不计。
背景:语音处理的一个关键机制被认为是大脑皮层节律与声学输入的一致性,这种机制称为同步。最近的研究表明,与语音相关的频率或适应语音包络的经颅电刺激 (tES) 实际上可以增强语音处理。但是,目前尚不清楚振荡 tES 是否是必要的,或者相关时间的刺激瞬变(例如,tES 信号中的峰值)是否足够。目标:在本研究中,我们使用了一种新颖的脉冲 tES 协议,并通过行为测试瞬变脉冲(而不是持续振荡)tES 信号是否可以改善语音处理。方法:当受试者聆听嵌入噪音中的口语句子时,将与语音瞬变(音节开始)一致的短暂电直流脉冲施加到听觉皮层区域以调节理解。此外,我们还调节了 tES 脉冲和语音瞬变之间的时间延迟,以测试行为的周期性调节,这表明 tES 引起了同步。结果:当 tES 脉冲相对于语音瞬变延迟 100 毫秒时,语音理解能力得到提高。与之前的报告相反,我们没有发现行为的周期性调节。然而,我们发现有迹象表明,周期性调节可能是由于过于粗糙地采样行为数据而产生的虚假结果。结论:受试者的语音理解能力受益于脉冲 tES,但行为并没有受到周期性调节。因此,脉冲 tES 可以帮助皮质对语音输入进行同步,这在嘈杂的环境中尤其重要。然而,脉冲 tES 本身似乎并不能同步大脑振荡。© 2020 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
总体而言,在过去十年中,美国的TES相对稳定,除了2020年的共同。石油产品和天然气是最重要的能源。在过去的十年中,石油产品的数量在32-33 EJ,占TES的36%左右。在2022年共同的一年级,石油产品下降了10%,这主要是由于运输活动减少。同时,水平已恢复到2019年的水平略低。天然气供应在2000年代(TES的25%)左右相当稳定,但是自2010年以来,该水平在2022年(TES的35%)稳步上升到32 EJ。尤其是自2018年以来,天然气的使用已大大增加。天然气的增加似乎在很大程度上弥补了煤炭下降。在2000年代(TES的24%)左右的煤炭消耗量非常稳定;自2010年以来,其使用稳步下降至2022年的10 EJ(占TES的11%)。核能在9 EJ(占TES的10%)左右相当稳定。
摘要 — 本综述文章全面分析了热能存储 (TES) 在热电联产 (CHP) 电厂中的热力学应用。TES 技术在 CHP 系统中的集成已引起越来越多的关注,成为提高能源效率、提高系统灵活性和优化热电资源利用的一种手段。通过对现有文献的全面审查,本综述重点介绍了该领域的主要发现、挑战和机遇。本综述首先讨论了 TES 和 CHP 系统的原理,概述了它们在储能和同时进行热电联产方面的各自优势。然后,它深入研究了适合与 CHP 电厂集成的各种 TES 技术,包括显热存储、潜热存储和热化学存储。在 CHP 应用的背景下分析了每种技术的优势和局限性。本综述的很大一部分重点介绍了通过在 CHP 电厂中集成 TES 实现的性能增强。对评估 TES 对 CHP 系统的效率、负载平衡和操作灵活性的影响的研究进行了严格审查。分析强调了 TES 缓解可再生能源间歇性挑战的潜力,以及它在支持电网稳定性和需求响应计划方面的作用。此外,审查还涉及热电联产厂实施 TES 的技术经济方面。讨论了各种研究集成系统的成本效益投资回报和总体经济可行性的研究。此外,它强调了生命周期评估在评估 TES 集成热电联产的环境效益和可持续性影响方面的重要性。审查了几个实际案例研究和试点项目,以深入了解 TES 在现有热电联产厂的实际应用。这些案例研究提供了有关系统设计考虑、性能优化和实施经验教训的宝贵信息。关键词:可再生能源、储能、液态空气、热力学
热能存储 (TES) 是支持建筑物电气化和脱碳的几种方法之一。为了高效地为建筑物电气化,可以将热泵等电力供暖、通风和空调 (HVAC) 设备与 TES 系统集成。TES 充当“热电池”:HVAC 设备加热或冷却(取决于季节)储热材料(例如冰/水、蜡、盐或沙子)以给 TES 充电。之后,可以释放 TES 中存储的能量来加热或冷却建筑物,但与没有 TES 的情况下 HVAC 系统运行时相比,所需的功率要低得多。这使得 HVAC 系统可以在清洁、可再生电力可用的期间运行,并在没有可再生能源或高峰负荷期间减少电力负荷。图 1 显示了与 HVAC 系统连接的冰储罐的示例。