摘要 热能存储 (TES) 系统通过使能源需求与供应相匹配来提高太阳能在烹饪中的利用率。有用的能量是从热分层的 TES 系统中提取的,当以平均恒定的温度充电时,这种能量会增强。本文介绍了用于控制油基 TES 系统充电的机械恒温器的实验分析。恒温器由一个滑阀、一个既用作热传感器又用作执行器的膨胀系统和一个用于设定充电温度的调节旋钮组成。当手动阀打开时,来自冷油箱的油在重力作用下流入加热室。在加热室中,油被加热,导致油膨胀,从而触发滑阀在预设温度下打开。这允许热油以设定的温度流入 TES 系统。恒温器被证明可以在预设温度 116°C、150°C、200°C 和 230°C 下为 TES 系统充电。随着充电温度的升高,输送到 TES 罐中的热油量减少。通过使用阀门降低油流量,将观察到的温度变化降至最低,从而实现相当稳定的充电温度。关键词:机械恒温器;充电温度;热能存储系统,
为波兰最大的城市之一供热和供电并配备 TES 系统的三座城市 (DHS) 均采用了蒸汽缓冲系统。所分析的三座 TES 的容量从 12,800 到 30,400 立方米不等,水箱直径从 21 到 30 米不等,壳体高度从 37 到 48.2 米不等。在 TES 水箱中使用蒸汽缓冲系统的主要目的是保护其中储存的水不会通过位于水箱顶部的调压室和安全阀吸收周围大气中的氧气。这里介绍的用于向水箱注入和排出热水的上部孔口和用于循环水的吸水管的技术解决方案使我们能够在蒸汽缓冲系统中节省大量能源。上部孔口和吸水管末端均可通过使用浮筒移动。由于采用了该技术解决方案,在 TES 水箱上部的上部孔口上方形成了稳定的绝缘水层,从蒸汽垫空间到水箱中储存的热水的对流和湍流热传输受到显著限制。最终,与 TES 水箱中蒸汽垫系统的经典技术解决方案(即上部孔口和循环水管)相比,热通量减少了约 90%。本文提出的简化分析及其结果与蒸汽垫空间到 TES 水箱上部储存的热水的热流实验数据的比较充分证实了所用热流模型的有效性。
摘要背景:在脑出血(ICH)的治疗限制领域,近年来非侵入性经颅电刺激(tES)取得了长足的发展。转化研究推测经颅直流电刺激(tDCS)和其他类型的 tES 仍然是一种潜在的新型治疗选择,可以逆转或稳定认知和运动障碍。目的:本研究旨在比较评估 tDCS、经颅交流(tACS)、脉冲(tPCS)和随机噪声(tRNS)刺激等四种主要 tES 模式对胶原酶诱导的雄性大鼠感觉运动障碍和纹状体组织损伤的影响。方法:为了诱发 ICH,将 0.5 μl 胶原酶注射到雄性 Sprague Dawley 大鼠的右侧纹状体中。手术后一天,对动物连续七天施加 tES。在手术前一天和术后第 3、7 和 14 天通过神经功能缺损评分、转棒和悬线测试评估运动功能。行为测试后,适当准备脑组织以进行立体学评估。结果:结果表明,四种 tES 模式(tDCS、tACS、tRNS 和 tPCS)的应用显著逆转了胶原酶诱导的 ICH 组的运动障碍。此外,tACS 和 tRNS 接受大鼠在悬线和转棒测试中的运动功能改善高于其他两个 tES 接受组。结构变化和立体学评估也证实了行为功能的结果。结论:我们的研究结果表明,除了 tDCS 在 ICH 治疗中的应用外,其他 tES 模式,尤其是 tACS 和 tRNS 可被视为中风的附加治疗策略。关键词:脑出血,纹状体,经颅电刺激,运动功能,体视学
摘要:未来,可再生能源的电网兼容整合将需要传统发电厂运营灵活性的大幅提升。将热能存储系统 (TES) 整合到发电厂过程中可以带来显著的改进,例如,在负载变化速度和部分负载行为方面。因此,对于现有工厂而言,升级以实现更灵活的运营前景良好,这有望在相对较短的时间内实现能源系统的改进。因此,本出版物的目的是确定燃煤发电厂中 TES 的集成选项,这些选项将实现所需的高灵活性潜力,同时包括具有成本效益的解决方案。通过在能源市场、发电厂流程和 TES 组件的未来场景之间进行迭代,从广泛的集成概念中开发出有利的配置。为此,进行了热力学模拟研究,开发了操作概念,进行了经济评估,进行了设计计算,并对不同的 TES 选项进行了实验研究。所获得的结果可以作为在现有硬煤燃煤发电厂中展示有前景的 TES 技术的基础。
摘要 认知神经科学的主要目标之一是了解认知所基于的神经机制。研究人员正在努力寻找认知机制与大脑活动产生的振荡之间的关系。非侵入性脑刺激技术的开发极大地促进了这一主题的研究。非侵入性脑刺激技术可以影响大脑网络的动态及其产生的行为,这使得它们的使用成为许多实验和临床领域关注的焦点。一种重要的非侵入性脑刺激技术是经颅电刺激 (tES),细分为经颅直流电刺激和交流电刺激。tES 最近因其在治疗慢性病方面取得的有效结果而变得更加知名。此外,在 tES 技术的解释和可行性方面也取得了非凡的进展。本文总结了 tES 的有益影响,并提供了迄今为止已取得的成就、简要历史和未来需要解决的未决问题的最新描述。tES 领域的一个基本问题是刺激持续时间。本综述简要介绍了使用基于功能性近红外光谱的脑成像监测大脑时在该领域所使用的刺激持续时间。
更广泛的背景 需要大量的能源存储来实现高可再生能源系统。技术开发主要集中在锂离子电池等电力存储技术上;然而,由于成本效益和材料供应链限制等问题,尚不清楚这些技术是否能够单独满足建筑物的现场能源存储需求。热能存储 (TES) 技术由于其成本低、寿命长、能够提高加热和冷却效率等特点,是建筑物的一种有吸引力的替代方案。通过这种批判性视角,我们通过量化相关挑战和机遇并系统地概述实现这一巨大潜力的未来研究和开发需求,为建筑物现场 TES 提供了依据。我们首次提出了一个框架来计算 TES 满足建筑物热负荷的平准化存储成本 (LCOS),从而能够采用整体方法解决影响 TES 成本的技术障碍,并能够与电力存储技术进行同类比较。向高效率、低排放和公平的能源系统过渡需要使用可再生能源驱动的热泵为建筑物供暖和制冷。TES 可以在提高热泵性能和加速其广泛应用方面发挥重要作用。
使用热量存储(TES)技术添加的灵活性,低温区加热(LTDH)系统可以以具有成本效益的方式协调热量和电部门。因此,这种组合已成为实现100%可再生能源系统的重要步骤。尽管在先前的研究中已经证明了TE的重要性,但与当前系统相比,TES在LTDH系统中的实际适用性给出了巨大的变化。此外,考虑到未来特征的发展,例如低温水平和较小的太空需求,TES的拟议好处可能会偏离期望。这项研究研究了四种典型的短期TES技术的性能和好处,包括使用中央水箱(CWT),地区供暖网络惯性,国内热水罐(DHWT)和建筑热量,基于丹麦Roskilde的Case LTDH系统的建筑热量。技术经济分析是基于热源对最终用户的运行的未来变化对多种情况进行的。还开发了一个集成模型,以模拟区域加热系统的操作动力学,以优化TES单元的使用。本研究根据从当前到未来的LTDH系统的过渡提供了TES技术的性能图,表明系统特征与最佳TES应用之间的关系。发现CWT是最可取的,可以使可变的可再生能源长时间储存热量。在最终用途的一侧,随着建筑物的改善和将来的空间供暖需求减少,使用建筑惯性的潜力较小。相反,DHWT的益处主要来自于非空间加热时期旁路损耗的减少,将来会增加。此外,发现在所有未来的LTDH方案下,发现主动存储的网络温度是不可行的,因为此措施会显着影响热源效率。
摘要:自然界中可用风能资源的不确定性和间歇性可能会导致风力发电量削减,当综合电网的灵活性有限时,尤其是在岛屿小型微电网中。本文提出了一种利用热能存储(TES)缓解岛屿微电网风力发电量削减的优化配置方法。热网与电网一起建模以利用其调节能力,同时引入 TES 作为额外的灵活性资源。提出了热电联产(CHP)机组和 TES 的详细成本模型,以实现最小化总体运营成本的目标。首先使用电锅炉(EB)作为基准来验证 TES 在提高风电利用率方面的性能,并在考虑风电容量、电力负荷和热负荷增长的不同情景下进一步分析。使用从实际岛屿微电网获得的真实数据验证了所提方法的有效性。
符合可持续发展目标的能源转型要求在大多数能源需求领域迅速采用可再生能源 [1,2] 。热能存储 (TES) 具有在发电、工业和建筑等不同领域实现可再生能源高份额的巨大潜力 [3,4] 。TES 的优势特性包括可变的存储容量和持续时间、灵活的供需脱钩、灵活的集成方式 [5] 和生命周期优势,引起了各个能源市场的特别关注。根据 IRENA 的符合《巴黎协定》的能源转型情景 [6] ,预计未来 10 年安装的 TES 容量将增加三倍,从 2019 年的 234 GWh 增加到 2030 年的至少 800 GWh。