摘要 更直接、更高分辨率和更大数量地收集脑数据的可能性加剧了人们对精神和脑隐私的担忧。为了管理这些隐私挑战给个人带来的风险,一些人建议编纂新的隐私权,包括“精神隐私”权。在本文中,我们考虑了这些论点并得出结论:虽然神经技术确实引发了重大的隐私问题,但这些问题——至少就目前而言——与其他众所周知的数据收集技术(如基因测序工具和在线监控)引起的问题没有什么不同。为了更好地理解脑数据的隐私风险,我们建议使用信息伦理中的概念框架,即海伦·尼森鲍姆的“情境完整性”理论。为了说明情境的重要性,我们在三个熟悉的情境——医疗保健和医学研究、刑事司法和消费者营销——中研究了神经技术及其产生的信息流。我们认为,强调脑隐私问题的独特之处,而不是与其他数据隐私问题的共同点,可能会削弱制定更强有力的隐私法和政策的更广泛努力。
此软件包提供了相关的摘要,该信息通常由分析师和安全团队手工制作的信息进行狩猎和事件响应。Corelight将实体定义为企业网络元素,例如系统,服务器,用户,域或证书。这些属性可在一组相互关联的日志中获得,这些日志从完整的Corelight日志流进行了汇总以进行快速搜索。此日志集包括有关网络上所有内容的实体信息,从IT设备(笔记本电脑,服务器,电话,打印机)到工业控制系统(ICS)和操作技术(OT)设备(构建自动化,相机和工业控制系统)。
临床成像工作流的主要重点是疾病诊断和管理,导致医学成像数据集与特定的临床目标密切相关。这种情况导致了开发特定于任务的分割模型的主要实践,而没有从广泛的成像群中获得见解。受到医学放射学居民培训计划的启发,我们提出了向普遍医学图像分割的转变,旨在通过利用临床目标,身体区域和成像方式的多样性和共同点来建立医学图像理解基础模型的范式。div of这个目标,我们开发了爱马仕,一种新颖的上下文 - 学习方法,以应对医学图像segmentation中数据杂基的挑战和注释差异。在五种模式(CT,PET,T1,T2和Cine MRI)和多个身体区域的大量各种数据集(2,438个3D图像)中,我们证明了通用范式比传统范式在单个模型中解决多个任务的传统范式的优点。通过跨任务的协同作用,爱马仕在所有测试数据集中都能达到最先进的性能,并显示出卓越的模型可伸缩性。其他两个数据集中的结果揭示了爱马仕在转移学习,分裂学习和对下游任务的概括方面的出色表现。爱马仕(Hermes)博学的先生展示了一个具有吸引力的特征,以反映任务和方式之间的复杂关系,这与既定的放射学解剖学和成像原则相吻合。代码可用1。
艺术疗法已被确定为一种强大的心理治疗工具,该工具利用艺术媒体来增强心理和神经系统健康。这得到了各种神经影像学和电生理研究的支持,这些研究揭示了其对脑功能的积极影响。这篇综述强调了在非洲背景下艺术疗法的潜力,由于其适应于非语言交流环境中的文化细微差别和有效性,因此可能有助于解决各种神经和心理需求。该评论还重点介绍了一次艺术疗法课程,旨在解决医护人员经历的悲伤。本评论还强调了扩大教育计划,政策制定和研究的必要性,以将艺术疗法更全面地整合到非洲医疗保健系统中。这些进步对于克服文化和资源相关的障碍至关重要,确保在非洲背景下艺术疗法的可及性和功效。
在此背景下,考虑到这些技术引发的数据保护问题,爱尔兰监管机构要求 EDPB 根据 GDPR 第 64(2) 条就一般适用事项发表意见。该请求涉及在人工智能(“AI”)模型的开发和部署阶段处理个人数据。该请求更详细地询问:(1)何时以及如何将 AI 模型视为“匿名”;(2)控制者如何证明合法利益作为开发和(3)部署阶段的法律依据的适当性;(4)在 AI 模型的开发阶段非法处理个人数据会对 AI 模型的后续处理或运行产生什么影响。
我们介绍多视图的细心上下文化(MVACON),这是一种简单而有效的方法,用于改善基于查询的多视图3D(MV3D)对象检测中的2D- TO-3D功能。尽管在基于查询的MV3D对象检测的领域取得了显着的进展,但先前的艺术通常会因高分辨率的高分辨率2D特征而缺乏基于密集的注意力提升的高分辨率2D特征,或者由于高计算成本,或者由于3D Queries的高度密集地接地不足,无法以3D Queries的高度质量为基于稀疏注意的多级2D功能。我们提出的MVACON使用代表密集但计算稀疏的细心特征连续化方案击中了两只鸟,该方案对特定的2d到3d feleture提升方法不可知。在实验中,使用BEVFormer及其最近的3D变形注意(DFA3D)变体以及PETR对纳斯曲霉基准进行了彻底的测试,并显示出一致的检测性能提高,尤其是在位置,方向和VELOCITY PRECTICTAR中提高了一致的检测性能。还可以在Waymo-Mini基准测试器上进行测试,并具有类似的改进。我们在定性和定量上表明,基于全局群集的上下文有效地编码了MV3D检测的密集场景级上下文。我们提出的MVA-CON的有希望的结果加强了计算机视觉中的格言 - “(contectu-alsized)特征事项”。
摘要近年来,人工智能(AI)的形式是深度学习模型的形式,已作为促进或在各个设计领域展现创造力的工具。在时装设计方面,AI的现有应用程序更加严重地解决了一般的时装设计元素,例如样式,轮廓,色彩,色彩和图案,并且更少注意对基本纺织品属性的关注。为了解决这一差距,本研究探讨了将生成深度学习模型专门用于时装设计过程的纺织品组成部分的效果,它是利用生成性的对抗网络(GAN)模型来为编织纺织品设计的新图像,然后基于与200名受访者的审美调查中的审美质量进行评估。结果表明,基于生成深度学习(GAN)的方法具有具有创造性和实用性的新纺织品设计的能力,从而促进了时装设计过程。
液体晶体(LC)是一种出色的电磁材料,在液体和晶体固体之间具有中间结构。它具有较大的光学各向异性,其光学特性可以通过中等外部磁场轻松修饰,从而使光的放大和相位调制。LC显示基于光的幅度或两极分化的模拟,已成为巨大的商业成功。同时,在光子学领域探索了许多LC设备的新型非显示器应用[1-6]。lc光学元素在操纵不同程度的光中发现了新的作用,尤其是在矢量梁的工程中,具有简单配置,方便使用,低成本和高转换效率的优势。向量场[7 - 9],其中横梁横平的光极化是空间变化的,引起了很多关注。矢量梁作为对矢量螺旋方程的自然解决方案。它们经常被生成具有正交极化状态的正交标量场的超级位置,为
摘要 患有压力相关衰竭症 (ED) 的患者存在记忆力和执行功能问题。这些问题与前额皮质 (PFC) 的异常活动有关。我们研究了 ED 患者 (n = 20,16 名女性) 在长时间心理活动期间的认知表现和 PFC 功能活动,ED 患者自确诊以来的平均持续时间为 46 ± 23 个月,并与健康个体 (n = 20,12 名女性) 进行了比较。按顺序进行了六个神经心理学测试,重复一次。所有测试均采用了脑成像技术、功能性近红外光谱 (fNIRS)。两组之间在随时间的变化方面没有差异,即第一个和第二个测试块之间的差异。在 Stroop - Simon 测试中,对照组表现出额皮质的功能活动更高。在左腹外侧 PFC 中,我们观察到对照组在不一致试验中的活动比一致试验中增加,而在 ED 患者组中没有发现任何变化。在处理速度任务期间,只有 ED 患者在右背外侧 PFC 中表现出更高的功能活动。ED 患者报告的主观能量水平较低,并且在心理控制任务中的表现也比健康人差。总之,ED 患者与对照组相比表现出改变的功能活动,表明 ED 患者在前额皮质中处理信息的方式不同,但重测设计显示,在 2 1 = 2 小时过程中,功能活动没有变化。