工业 4.0 通过人工智能、物联网 (IoT)、云计算、信息物理系统 (CPS) 和认知计算彻底改变了制造业,创造了“智能”环境,互联的机器可以自主优化生产。这种转变显著提高了生产力和性能。然而,工业 5.0 进一步发展,强调人与机器人之间的协作,利用人类的创造力和先进的机械。它旨在提高效率并实现大规模个性化,产品可根据个人需求量身定制。工业 5.0 的核心价值是以人为本,机器处理重复性任务,人类专注于认知和批判性思维任务 [2]。一方面,根据 [3],支持以人为本的制造业人工智能的关键技术包括 i) 主动学习 (AL):人工智能系统不断从人类反馈中学习,增强人机协同作用;ii) 可解释人工智能 (XAI):确保人工智能决策透明易懂,促进信任和协作;iii) 模拟现实:使用虚拟环境模拟真实场景进行训练和决策; iv) 对话界面:实现人机之间的自然语言交互,提高可用性;v) 安全性:数字化增加了攻击面,因此需要确保数据和系统的安全。另一方面,在这种转变中,物体检测 (OD) 发挥着至关重要的作用 [4],它应用于不同的系统,例如质量控制的缺陷检测、协作机器人 (cobots)、用于码垛和自动拾取和放置系统的机械臂以及视频监控系统。此外,值得一提的是,这些系统的最新发展是基于 YOLO 检测器,以实现精度和推理速度效率的平衡 [5]。
研究诚信 我们的使命是通过研究和分析帮助改善政策和决策,这得益于我们的核心价值观:质量和客观性,以及我们对最高诚信和道德行为的坚定承诺。为确保我们的研究和分析严谨、客观、不偏不倚,我们对研究出版物进行了严格而严格的质量保证流程;通过员工培训、项目筛选和强制披露政策,避免出现和实际出现财务和其他利益冲突;并通过承诺公开发表我们的研究结果和建议、披露已发表研究的资金来源以及确保知识独立的政策,追求研究工作的透明度。有关更多信息,请访问 www.rand.org/about/principles。
摘要:这是21世纪工作场所的共同特征,是多元文化的。工作专业人员需要拥有强大的互动能力,以便在工作场所的各种跨文化相遇中处理专业沟通。这对专业传播教育提出了挑战,因为教育工作者需要将不同的文化实践和对话者的教学材料纳入其教学和评估材料中。在本文中,我们反映了跨文化背景下专业传播教育的实践挑战,并设想在这个地方可以做些什么。我们从在专业传播教育中融合多样化的文化代表性方面始于一些实用的,现场的困境。然后,我们使用操作AI介导的评估工具来详细说明使用AI开发教学和评估材料进行专业交流教育的可能性,措施和警告。我们以AI新兴空间的未来研究和实践的指示在跨文化背景下进行专业交流(AI-PCIC)。
NPS 关于在学术工作中披露生成式 AI 使用的指导 DoD 关于使用生成式 AI 的临时指导强调了透明度和引用的必要性,期望学生和作者对在生成式 AI 帮助下生成的文档进行标记。同样,在学术研究、出版、作者和学习环境中也正在建立标准,以承认 AI 在准备手稿和完成课程作业中的作用。如果您计划使用或已经使用生成式 AI 作为编写课程作业或论文作业的工具,请首先确保您的使用符合教授或顾问的政策。如果您不确定您的使用是否符合教职员工的政策,请不要想当然。直接询问您的教授或顾问,向他们提供您计划如何使用或已经使用生成式 AI 的具体示例。当您使用生成式 AI 可能会引入您未创建的元素(例如,措辞、图像、代码)时,您需要向读者和利益相关者(例如,教授、顾问、出版商、赞助商)披露 AI 的使用情况。即使您已获得使用 AI 的许可,也请包含简短、描述性的披露声明。有关更多背景信息,请查看 NPS 学术荣誉准则和 NPS 关于使用生成式 AI 的临时指导。披露声明
Shelagh Delaney A Taste of Honey 11–12 9 William Golding Lord of the Flies 13–14 10 AQA Anthology Telling Tales 15–16 11 George Orwell Animal Farm 17–18 12 Kazuo Ishiguro Never Let Me Go 19–20 13 Meera Syal Anita and Me 21–22 14 Stephen Kelman Pigeon English 23–24 15 SECTION B Poetry Questions Page AQA Anthology Poems Past现在的爱与人际关系25 17权力与冲突26 20–21 C c conteen诗歌27.1 22 27.2 23转换为A
JMU AI 任务组春季更新:JMU 的人工智能任务组在过去一学年专注于四个探索领域:作者身份和新知识的产生;人工智能和学生体验;高等教育和社会中的新背景和意义;以及生成性人工智能的可能管理应用。我们根据 JMU 在数据治理、麦迪逊再造项目和总统目标 #1b 方面的努力开展这项工作。任务组团队共同制作了一套丰富的初步调查结果和建议(2024 年 2 月初步报告),提交给访客委员会(2024 年 4 月幻灯片),并且——最近——汇编了其他要点和可能的下一步方向,概述如下。第 1 组:作者身份和新知识这个任务组小组于 2024 年春季召集了来自整个校园的一系列教职员工焦点小组,讨论人工智能在教学和学术中的使用。我们使用 ChatGPT 4 开始总结 6 多个小时的讨论,我们的领导小组修改并确定了以下内容的优先顺序。我们想分享讨论中的关键要点和未来工作的关键建议:焦点小组记录中的关键要点
*鉴于其在抗菌耐药性的背景下,这是对全球公共卫生的最大威胁之一,欧洲药典委员会决定尽快提供本一章,因此将其发布在补充11.6中。
摘要 - 在各个领域中广泛使用知识图在其中有效整合和更新信息带来了挑战。在合并上下文时,常规方法通常依赖于规则或基本的机器学习模型,这可能无法完全掌握上下文信息的复杂性和流动性。这项研究提出了一种基于强化学习(RL)的方法,特别是利用深Q网络(DQN)来增强将上下文集成到知识图中的过程。通过将知识图的状态考虑为环境将动作定义为集成上下文的操作并使用奖励功能来评估知识图质量后整合后的改进,该方法旨在自动开发最佳上下文集成的策略。我们的DQN模型将网络用作函数近似器,不断更新Q值以估计动作值函数,从而有效地集成了复杂和动态上下文信息。最初的实验发现表明,我们的RL方法在实现各种标准知识图数据集的精确上下文集成方面优于技术,突出了增强学习在增强和管理知识图方面的潜在和有效性。索引术语 - 知识图推理,强化学习,奖励成型,转移学习
幼儿发展的重要性:对于最小的孩子来说,危机的经历是他们生活中特别关键的地方。从出生到3岁,大脑每秒发育高达一百万个神经联系,为终身学习,健康和生产力奠定了基础。1,但这些年来,数百万儿童在冲突或危机情况下经历了:全球超过7100万儿童在受冲突影响的地区度过了一生,六分之一的孩子生活在一个活跃的冲突地区。2个大量证据表明,在生命的关键早期几年中,长期逆境会破坏大脑发育,对健康,学习和行为的毁灭性,长期影响。3这有可能产生终生的不稳定和贫穷的循环,影响个人前景以及更大的社区凝聚力,韧性和公平目标。