抽象的气候变化需要快速扩大低碳电力,但是关于可再生能源和核电等可用技术是否可以足够快地扩展到足够快的扩展。在这里,我们分析了核的扩散(从1960年代),以及风和太阳能(从1980 - 90年代开始)。我们表明,除了主要的能源出口商以外,大多数大型经济体都采用了所有这些技术,但是太阳能和风在国家 /地区的范围比核能更快。最初采用后,核电的最大年增长率为国家电力供应的2.6%(IQR 1.3%–6%),风能-1.1%(0.6%–1.7%),太阳能-0.8%(0.5%–1.3%)。核能的最快增长发生在1980年代的西欧,这是工业化民主国家对1970年代能源供应危机的反应。目前经历了类似的能源供应冲击的欧盟(EU)计划以类似的快速速度扩大风能和太阳能。这说明国家环境至少与成本,粒度和复杂性等技术特征一样影响技术扩散的速度。在政府间缓解途径的政府间小组中,由于其预计成本较低,可再生能源的增长速度要快得多,尽管经验证据并未表明成本是决定扩散速度的唯一因素。我们证明,即使可再生能源的增长速度与最雄心勃勃的欧盟计划一样快,在1.5℃的目标上扩大亚洲低碳电力也需要增长。2◦亚洲C一致的途径与复制中国在整个地区的核电计划兼容,同时在欧盟的近期预测中同时扩展了可再生能源。我们的分析证明了以经验基准的可行性空间对未来技术预测的有用性。
人类遗传变异影响诸如疾病易感性等性状的人类遗传变异经常通过以高细胞类型的特异性方式调节基因表达来起作用。能够直接从DNA序列预测基因表达的计算模型可以帮助解释表达调节变体的解释,而机器学习模型现在在捕获远程人体转录调控所需的较大序列环境中运行。然而,现有的谓词集中在批量转录测量上,其中基因表达异质性可以淹没在广泛定义的细胞类型中。在这里,我们使用转移学习框架,SEQ2细胞,利用预训练的表观基因组模型从单细胞分辨率的大序列上下文中进行基因表达预测。我们表明,SEQ2CELLS捕获了超出伪膨胀数据的分辨率的细胞特异性基因表达。使用SEQ2CELLS进行变异效应预测揭示了带注释的细胞类型中的异质性,并在细胞种群之间启用了变异效应的硅化转移。我们证明了单细胞分辨率下基因表达和变异效应预测的挑战和价值,并为解释基因组变异的解释提供了毫不妥协的分辨率和规模。
近年来,由于深度学习方法的出现,机器翻译 (MT) 得到了迅猛发展,而神经机器翻译 (NMT) 则显著提高了自动翻译的质量。虽然大多数工作涵盖了技术、法律和医学文本的自动翻译,但机器翻译在文学文本中的应用以及人类在这一过程中的作用尚未得到充分探索。为了弥补这一研究不足领域的空白,本文介绍了一项研究的结果,该研究旨在评估三种机器翻译系统对两种不同文学体裁、两部小说(乔治·奥威尔的《1984》和简·奥斯汀的《傲慢与偏见》)和两首诗(艾米莉·狄金森的《我感受到了大脑中的葬礼》和玛格丽特·阿特伍德的《海妖之歌》)的性能,这代表了不同的文学时期和时间线。评估通过自动评估指标 BLEU 进行,以客观评估机器翻译系统在每种体裁中的表现。本研究还概述了其局限性。
11 阿尔凯西和麦克法兰,2023;阿塔鲁里等人。 2023;基督教 2023;法郎 2023;胡赛尼、拉斯穆森和雷斯尼克 2023;吉等人。 2023;基德和比尔汉 2023; Lee、Bubeck 和 Petro 2023;莱特曼等人。 2023;刘、张、梁 2023;梅加赫德等人。 2023;梅策、莫兰丁-雷斯、罗兰-梅策和弗洛林多 2023 年; OpenAI 2023 年 3 月 27 日;波里茨 2023;韦斯和梅斯 2023 年;威瑟 2023;张,等人。 2023;赵,等人。 2023; Zhavoronkov 2023。12 Busch 2023;电子隐私信息中心 2023;Huang 2023;Hosseini 和 Horbach 2023;Lauer、Constant 和 Wernimont 2023;Meskó 和 Topol 2023;美国国立卫生研究院 2023;Schwartz 和 Rogers 2022。13 请参阅 registrar.uky.edu/ferpa 和 registrar.uky.edu/ferpa/ferpa-faculty-and-staff-faq。14 请参阅 www.research.uky.edu/office-research-integrity。15 Bender、Gebru、McMillan-Major 和 Shmitchell 2021;Brown 等人 2020;Caliskan、Bryson 和 Narayanan 2017;Hovy 和 Prabhumoye 2021; Liang, Wu, Morency 和 Salakhutdinov 2021;Najibi 2020;Nazer 等人 2023;Nicholas 和 Bhatia 2023;Schwartz 等人 2022;Small 2023 年 7 月 4 日;Whittaker 等人 2019;Zhuo, Huang, Chen 和 Xing 2023。16 Appel、Neelbauer 和 Schweidel 2023;Lucchi 2023;Saveri 和 Butterick 2023;Sobel 2018;Strowel 2023;Thorbecke 2023;Zirpoli 2023。17 Chen, Zaharia 和 Zou 2023。
人类遗传变异影响诸如疾病易感性等性状的人类遗传变异经常通过以高细胞类型的特异性方式调节基因表达来起作用。能够直接从DNA序列预测基因表达的计算模型可以帮助解释表达调节变体的解释,而机器学习模型现在在捕获远程人体转录调控所需的较大序列环境中运行。然而,现有的谓词集中在批量转录测量上,其中基因表达异质性可以淹没在广泛定义的细胞类型中。在这里,我们使用转移学习框架,SEQ2细胞,利用预训练的表观基因组模型从单细胞分辨率的大序列上下文中进行基因表达预测。我们表明,SEQ2CELLS捕获了超出伪膨胀数据的分辨率的细胞特异性基因表达。使用SEQ2CELLS进行变异效应预测揭示了带注释的细胞类型中的异质性,并在细胞种群之间启用了变异效应的硅化转移。我们证明了单细胞分辨率下基因表达和变异效应预测的挑战和价值,并为解释基因组变异的解释提供了毫不妥协的分辨率和规模。
摘要:本研究旨在调查多模态模式对远程塔台环境的贡献。使用交互式空间声音和振动触觉反馈设计了 4 种不同类型的交互和反馈,以响应 4 种典型的空中交通管制用例。实验涉及 16 名专业空中交通管制员,他们被要求在生态实验条件下管理 4 种不同的 ATC 场景。在其中两种场景中,参与者只需控制一个机场(即单远程塔台环境),而在另外两种场景中,参与者必须同时控制两个机场(即多远程塔台环境)。增强模式以平衡的方式激活或不激活。行为结果强调,当在单远程塔台环境中激活增强模式时,参与者的整体表现显着提高。这项工作表明,某些类型的增强模式可用于远程塔台环境。
100 考生须知 回答所有问题。将答案写在本手册提供的空白处。使用黑色墨水笔或黑色圆珠笔。不要使用铅笔或中性笔。不要使用修正液。 考生须知 本试卷总分为 100 分。分数以括号形式列于每个问题或部分问题末尾。
抽象的无线脑电图(EEG)设备允许在实验室外面的上下文中记录记录。但是,必须考虑许多细节以供其使用。在这项研究中,使用与一组三年级小学生的案例研究,我们旨在在教育环境中展示这些设备的研究的一些潜力和局限性。在这些经验的发展中显而易见:研究团队和教育社区的利益和可能性之间;在教室的生活扭曲与学术界与实践之间合作的机会之间;在预算和准备设备的便利性和收集数据的实用性之间。在他们的潜力中,他们的知识是,他们允许访问不同的认知和情感过程,以及由研究人员与教育社区之间的联系所代表的学习机会。教室中的生活被这些类型的经验打断了,但这可能是一种促进更具综合性的未来发展的成本,从而使教学和学习过程受益。
最近的文献表明,触觉事件在初级体感皮层 (S1) 中的表现超出了其长期确定的拓扑结构;此外,S1 受视觉调节的程度仍不清楚。为了更好地描述 S1,在触摸前臂或手指时记录了人类电生理数据。条件包括视觉观察到的物理触摸、没有视觉的物理触摸和没有物理接触的视觉触摸。从这个数据集中得出两个主要发现。首先,视觉强烈调节 S1 区域 1,但前提是触摸有物理元素,这表明被动触摸观察不足以引起神经反应。其次,尽管在假定的 S1 手臂区域记录,但神经活动在物理触摸期间代表手臂和手指刺激。手臂触摸的编码更强烈和具体,支持 S1 主要通过其拓扑组织编码触觉事件的想法,但也更普遍地涵盖身体的其他区域。
•问题内置错误信息的任务。例如:问:“蒂娜·皮平(Tina Pippin)如何使用wellhausen的纪录片假设来了解彼得的启示?”将产生一个反应,表明她确实使用该理论时,实际上她没有。•个人信息,本地环境或社区知识至关重要的任务。例如:“在课堂上,我们讨论了浊度作为水质的一种度量。当您对Stockton校园后面Calaveras的水进行浊度分析时,您对其肾上腺浊度单元有什么了解?” •必须在与上下文材料的关系中分析视觉效果的任务例如“此图[图像]如何帮助我们了解在您的文件夹中讨论的社区中可能诊断和处理(或未经处理)的产后抑郁症的方式