无溶剂合成和加工金属有机骨架 (MOF) 对于将这些材料应用于应用技术至关重要。MOF 薄膜的气相合成特别适合此类应用,但与传统的基于溶液的方法相比具有挑战性。因此,推进和扩大 MOF 薄膜的气相合成势在必行。结晶对苯二甲酸铜 MOF 薄膜通过原子和分子层沉积 (ALD/MLD) 在不同种类的基底上以气相生长。从先驱工作扩展而来,首次清楚地证明了 3D 相的形成,并揭示了该工艺对多种基底的适应性。在 ALD/MLD 工艺的早期阶段观察到定向膜生长,导致表面上取向的 MOF 晶体,当随着 ALD/MLD 循环次数的增加而进行各向同性生长时。值得注意的是,这项研究主要展示了使用具有晶格匹配拓扑的 DMOF-1 单晶作为起始表面,在气相中实现异质外延生长。这种方法为在气相中开发 MOF 超晶格材料提供了一种有吸引力的途径。
眼科中的DeepSeek-R1的标题表现:对临床决策和成本效益的评估作者David Mikhail MD(C)MSC(C)MSC(C)1,Andrew Farah MDCM(C)2,Jason Milad Bse(Jason Milad Bse(C)4票价ANTAKI MDCM FRCSC 3,5,6,7,8,Michael Balas MD 9,Marko M. Popovic MD MD MPH FRCSC 9,10,Alessandro Feo MD 10,11,Rajeev H. Muni Muni MD MD MSC FRCSC 9,12 Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada 2 Faculty of Medicine, McGill University, Montreal, Quebec, Canada 3 Department of Ophthalmology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada 4 Department of Software Engineering, University of Waterloo, Waterloo, Ontario, Canada 5 Department of Ophthalmology, University of蒙特利尔,蒙特利尔,加拿大魁北克省6个中心大学d'Ophtalmologie(CUO),HôpitalMaisonneuve-Rosemont,Ciusss de l'Est-de-de-de-de-de-de-de-l'île-de-montréal,蒙特利尔,加拿大魁北克 (CHUM), Montreal, Quebec, Canada 8 Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA 9 Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario Canada 10 Retina Division, Stein and Doheny Eye Institutes, Department of Ophthalmology, University of California, Los Angeles, California, United States of America 11 Department of人类大学生物医学科学,通过Rita Levi Montalcini 4,20072。眼科中的DeepSeek-R1的标题表现:对临床决策和成本效益的评估作者David Mikhail MD(C)MSC(C)MSC(C)1,Andrew Farah MDCM(C)2,Jason Milad Bse(Jason Milad Bse(C)4票价ANTAKI MDCM FRCSC 3,5,6,7,8,Michael Balas MD 9,Marko M. Popovic MD MD MPH FRCSC 9,10,Alessandro Feo MD 10,11,Rajeev H. Muni Muni MD MD MSC FRCSC 9,12 Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada 2 Faculty of Medicine, McGill University, Montreal, Quebec, Canada 3 Department of Ophthalmology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada 4 Department of Software Engineering, University of Waterloo, Waterloo, Ontario, Canada 5 Department of Ophthalmology, University of蒙特利尔,蒙特利尔,加拿大魁北克省6个中心大学d'Ophtalmologie(CUO),HôpitalMaisonneuve-Rosemont,Ciusss de l'Est-de-de-de-de-de-de-de-l'île-de-montréal,蒙特利尔,加拿大魁北克 (CHUM), Montreal, Quebec, Canada 8 Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA 9 Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario Canada 10 Retina Division, Stein and Doheny Eye Institutes, Department of Ophthalmology, University of California, Los Angeles, California, United States of America 11 Department of人类大学生物医学科学,通过Rita Levi Montalcini 4,20072。Pieve Pieve Emanuele-Milan,意大利12号科学系,圣迈克尔医院/统一健康多伦多,多伦多,多伦多,安大略省,加拿大,加拿大,加拿大,加拿大安大略省13伦敦大学学院,伦敦大学,UK 14 NIHR BIOMEDICAL BIOMEDICAL研究中心NHS Eye Hospital HospitA HospitA HospitA HospitA nhs NHS Hospital Hospital Tossict,NHS NHS EYS TOUNTION,UK DUERING DUVELINGIM of FIRC,MODINIM,蒙特利尔2900ÉdouardMontpetitBoulevard,蒙特利尔,加拿大魁北克,H3T 1J4电话:(514)252-3400Pieve Pieve Emanuele-Milan,意大利12号科学系,圣迈克尔医院/统一健康多伦多,多伦多,多伦多,安大略省,加拿大,加拿大,加拿大,加拿大安大略省13伦敦大学学院,伦敦大学,UK 14 NIHR BIOMEDICAL BIOMEDICAL研究中心NHS Eye Hospital HospitA HospitA HospitA HospitA nhs NHS Hospital Hospital Tossict,NHS NHS EYS TOUNTION,UK DUERING DUVELINGIM of FIRC,MODINIM,蒙特利尔2900ÉdouardMontpetitBoulevard,蒙特利尔,加拿大魁北克,H3T 1J4电话:(514)252-3400
本文报道了一种环保的锂对苯二甲酸/聚乳酸 (Li 2 TP/PLA) 复合细丝的开发,该细丝通过熔融沉积成型 (FDM) 进行 3D 打印后可用作锂离子电池的负极。通过在挤出机内直接引入合成的 Li 2 TP 颗粒和 PLA 聚合物粉末,实现了 3D 可打印细丝的无溶剂配方。通过加入平均 M n ∼ 500 的聚乙二醇二甲醚 (PEGDME500) 作为增塑剂,提高了可打印性,而通过引入炭黑 (CB) 则提高了电性能。彻底讨论了热、电、形态、电化学和可打印性特性。通过利用 3D 打印切片软件功能,提出了一种创新方法来改善 3D 打印电极内的液体电解质浸渍。© 2021 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款发布(CC BY,http://creativecommons.org/licenses/ by/4.0/),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当引用。[DOI:10.1149/ 2162-8777/abedd4]
背景:血液蛋白质组是生物标志物和治疗靶标的主要来源。我们旨在通过系统的遗传分析来鉴定坟墓疾病(GD)和坟墓的眼科(GO)的因果蛋白和潜在靶标。方法:全基因组协会研究(GWASS)对英国生物友好的蛋白质组学项目(UKB-PPP)收集了来自54,219名参与者的2923个Olink蛋白。我们对整个蛋白质组的孟德尔随机化(MR)研究进行了CIS-PQTL研究,以鉴定候选蛋白的GD和GO风险。共定位分析和HEIDI检验用于检查已鉴定的蛋白质和疾病是否具有相同的变体。使用反式PQTLS的基于摘要的MR(SMR)分析中鉴定了更多具有潜在因果关系的蛋白质。然后,进行下游分析以检测蛋白质相互作用,基因功能,细胞类型特异性表达和可药物的信息。结果:这项研究在遗传上预测的62个血浆蛋白与GD风险有关。将四种蛋白质(CD40,Tinagl1,Gmpr和CXCL10)优先考虑,证明与GD共享相同的变体。具体来说,某些蛋白质与GD与CD40中的Trans-PQTL映射具有潜在的关联。四个优先蛋白编码基因主要富含凋亡和死亡过程的调节。此外,GMPR与GO和GD都沿一致的方向相关联。BTN1A1和FCRL1优先考虑为发作的因果蛋白,与GD无关。关键词:血浆蛋白质组学,Graves疾病,Olink,Mendelian随机化结论:通过综合蛋白质组织和遗传数据,我们确定了GD的几种蛋白质生物标志物,其中一种与GD和GO相关联,而另外两个特定于GO的蛋白质生物标志物可以发作,这为两种疾病提供了对病因学和潜在的治疗靶标的有价值的见解。
Asanuma, C.、Thach, WT 和 Jones, EG (1983)。猴子丘脑腹侧区小脑末梢分布及其与其他传入末梢的关系。《脑研究评论》,5 (3),237 – 265。https://doi.org/10.1016/0165-0173(83)90015-2 Behrens, TEJ、Johansen-Berg, H.、Woolrich, MW、Smith, SM、Wheeler-Kingshott, C.、Boulby, PA、Barker, GJ、Sillery, EL、Sheehan, K.、Ciccarelli, O.、Thompson, AJ、Brady, JM 和 Matthews, PM (2003)。使用扩散成像对人类丘脑和皮质之间的连接进行非侵入性映射。 Nature Neuroscience,6 (7),750 – 757。https://doi.org/10.1038/nn1075 Benabid, AL, Pollak, P., Hoffmann, D., Gervason, C., Hommel, M., Perret, JE, de Rougemont, J., & Gao, DM (1991)。通过长期刺激丘脑腹侧中间核长期抑制震颤。The Lancet,337 (8738),403 – 406。https://doi.org/10. 1016/0140-6736(91)91175-T Chen, H., Hua, SE, Smith, MA, & Lenz, FA (2006)。人类小脑丘脑破坏对伸手适应性控制的影响。大脑皮层,16 (10),1462 – 1473。Chopra, A.、Klassen, BT 和 Stead, M. (2013)。深部脑刺激在治疗特发性震颤方面的当前临床应用。神经精神疾病和治疗,9,1859 – 1865。https://doi.org/10.2147/NDT.S32342 Crowell, AL、Ryapolova-Webb, ES、Ostrem, JL、Galifianakis, NB、Shimamoto, S.、Lim, DA 和 Starr, PA (2012)。运动障碍中感觉运动皮层振荡:皮层电图研究。 Brain , 135 (2), 615 – 630. https://doi.org/10.1093/brain/awr332 Cury, RG, Fraix, V., Castrioto, A., Perez Fernandez, M., Krack, P., Chabardes, S., Seigneuret, E., Benabid, A.-L., & Moro, E. (2017). 丘脑深部脑刺激治疗帕金森病震颤,基本
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。
摘要假设丘脑下核(STN)在反应停止信号的快速停止运动中起着核心作用。单单元记录这种作用的证据很少,但仍然不确定该作用与STN解剖学细分所描述的不同功能如何相关。在这里,我们使用非人类灵长类动物解决了知识的差距,以及区分反应性和主动作用抑制,开关和骨骼运动函数的任务。我们发现,STN神经元的特定子集具有与反应性动作停止或切换中因果关系一致的活性。重要的是,这些神经元严格隔离到STN的腹侧区域。在其他细分中编码任务维度(例如运动本身和主动控制)中的神经元。我们建议,STN参与反应性控制仅限于其腹侧部分,进一步暗示了脉冲控制障碍中的这一STN细分。
身体内部信号,如心脏 - 呼吸信号,不断从身体传输到大脑,确保生物体的自我调节。皮层下大脑区域对于这种身体 - 大脑交流尤为重要,但它们对人类内部身体信号的处理在很大程度上是未知的。通过研究人类三个皮层下区域(两个丘脑核和一个丘脑底核)中单个神经元的活动,我们发现大部分神经元受到心跳、呼吸或心动周期持续时间的调节,而这些信号的普遍性在皮层控制区域中大大降低。我们的研究表明,重要的心脏 - 呼吸信号在这些皮层下区域是如何被广泛处理的,扩展了我们对它们在身体 - 大脑交流中的作用的理解。
本文考虑了在武装冲突中和外部武装冲突中的自动武器的潜在使用,包括执法。它从人权法的角度分析了现象,特别关注生命权。十多年来,国际社会一直在辩论是否要在国际人道主义法的框架内建立新规则的技术进步是否需要建立新规则。相比之下,尽管对生命权和其他人权的影响,但从人权法的角度考虑这种技术是有限的。同时,近年来已经出现了一些国际倡议,目的是建立基于尊重Human权利的人工智能(AI)的非约束和约束力规则。本文回顾了四个这样的举措:关于AI的经合组织建议,联合国教科文组织的AI伦理学建议,国际刑警组织和UNICRI工具包,用于执法的负责人AI创新以及欧洲AI公约。它检查了这些举措在多大程度上解决自动武器提出的具体问题。
对TFBS间距配置的比较分析以及相对于体内TSS和体外实验条件的距离。tfs分为Y轴的家庭和类,颜色与PlantTF级超类3相对应。TSS以0 bp为中心,并均匀地定向右侧。每行右侧的数字表示分析中使用的样本数量。浅灰色颜色的行表示相应的TF家族缺乏数据。tfbss以与TSS相同的方向为方向而定,指向右侧的蓝色箭头表示,而相对于TSSS的TFBS朝着相反的方向表示的,用指向左侧的红色箭头表示。plindromic TFBS由紫色钻石表示。颜色的强度反映了平均z得分,固体颜色代表更高的分数和更透明的颜色代表得分较低。