重离子束是一种电离辐射,它已作为一种强诱变剂应用于植物育种,并且是一种诱导大规模缺失和染色体重排的有前途的工具。重离子辐照的有效性可以用线性能量转移 (LET;keV µm -1 ) 来解释。不同 LET 值的重离子束会诱发不同类型和大小的突变。已有研究表明,缺失大小随 LET 值的增加而增大,较高的 LET 辐射会诱发复杂的染色体重排。在本研究中,我们将在拟南芥突变体中检测到的重离子束诱导的缺失定位到其基因组中。我们发现,不同的 LET(100 至 290 keV mm -1 )之间的缺失大小相似,其上限受必需基因分布的影响,并且检测到的染色体重排避免了破坏必需基因。我们还重点研究了串联基因 (TAG),即基因组中两个或多个同源基因相邻。我们的结果表明,100 keV µm -1 的 LET 足以破坏 TAG,并且必需基因的分布会强烈影响与其重叠的突变的遗传性。我们的研究结果提供了拟南芥基因组中大量缺失诱导的基因组视图。
复原 我们建议在打开前先短暂离心此小瓶,使内容物沉至底部。请使用去离子无菌水复原蛋白质至浓度为 0.1-1.0 mg/mL。我们建议添加 5-50% 甘油(最终浓度)并分装以在 -20°C/-80°C 下长期储存。我们默认的甘油最终浓度为 50%。客户可以将其作为参考。
摘要 — 研究了 T-DNA 插入拟南芥 At3g58450 基因(该基因编码与发芽相关的通用应激蛋白 (GRUSP))的 3'-UTR 区域的影响。研究发现,在长日照条件下,该突变会延迟 grusp-115 转基因株系的开花转变,这是因为与野生型植物 (Col-0) 相比,内源生物活性赤霉素 GA1 和 GA3 的含量降低。外源 GA 加速了这两个株系的开花,但没有改变 Col-0 和 grusp-115 之间开花开始时间的差异。除了 GA 代谢的变化之外,grusp-115 显然在诱导开花信号的实现方面存在干扰。开花整合因子 FLOWERING LOCUS T ( FT ) 和开花抑制因子 FLOWERING LOCUS C ( FLC ) 的基因表达结果证实了这一点,它们是关键的开花调节因子,作用相反。我们假设,由于 FLC 表达上调,FT 表达水平较低也会影响 grusp-115 表型的形成。
复原 我们建议在打开前先短暂离心此小瓶,使内容物沉至底部。请使用去离子无菌水复原蛋白质至浓度为 0.1-1.0 mg/mL。我们建议添加 5-50% 甘油(最终浓度)并分装以在 -20°C/-80°C 下长期储存。我们默认的甘油最终浓度为 50%。客户可以将其作为参考。
带有评论[PZ1]:也许从转录调节到重组的过渡更加顺利,您可以写出,这种“本地招聘”不仅导致了基因的转录,而且还会影响减数分裂的交叉形成
对TFBS间距配置的比较分析以及相对于体内TSS和体外实验条件的距离。tfs分为Y轴的家庭和类,颜色与PlantTF级超类3相对应。TSS以0 bp为中心,并均匀地定向右侧。每行右侧的数字表示分析中使用的样本数量。浅灰色颜色的行表示相应的TF家族缺乏数据。tfbss以与TSS相同的方向为方向而定,指向右侧的蓝色箭头表示,而相对于TSSS的TFBS朝着相反的方向表示的,用指向左侧的红色箭头表示。plindromic TFBS由紫色钻石表示。颜色的强度反映了平均z得分,固体颜色代表更高的分数和更透明的颜色代表得分较低。
*用于跑步:Nordborg。†其他字母列表:Carlos C. Alonso-Blanc 3,Fritschi Catri 2,Grigoreva 5, Kersey 10,康沃尔郡亚历山大5,Quichao Lian Magnus Nordborg 5,Ferdinand A. Rabbanal 2,Rebecca Schandry 2,路易莎·塞斯代尔2,塞巴斯蒂安边境
摘要:微生物组在塑造宿主表型中的作用已成为一个关键的研究领域,对生态,进化和宿主健康具有影响。复杂而动态的相互作用涉及植物及其多样化的根际微生物群落受到许多因素的影响,包括但不限于土壤类型,环境和植物基因型。了解这些因素对微生物社区大会的影响是产生特定于植物的宿主特定和强大的好处的关键,但它仍然具有挑战性。在这里,我们对八代拟南芥l和cvi进行了人工生态系统选择实验,以选择与宿主的较高或更低生物量相关的土壤微生物。这导致了由于随机环境变化,植物基因型和生物量选择压力之间复杂的相互作用所塑造的不同微生物群落。在实验的初始阶段,基因型和生物量选择处理具有适中但显着的影响。随着时间的流逝,植物基因型和生物量处理的影响更多,解释了微生物群落组成的约40%。此外,在选择高生物量的选择下,观察到在选择中,观察到在选择中,观察到在选择中,观察到在选择中,观察到了植物生长促进根细菌的基因型特异性关联,labraceae和l er和rhizobiaceae与CVI的基因型相关性。
茉莉酸(JA),乙烯(ET)和水杨酸(SA)是三个主要的植物激素协调植物防御反应,这三个均与防御真菌病原体氧气的防御有关。但是,它们独特的作用方式和可能的相互作用仍然未知,部分原因是所有有关其活动的空间信息均缺乏。在这里,我们着手通过使用新开发的基于荧光的转录记者线的实时显微镜来探测植物免疫的这一空间方面。我们创建了一个植物免疫系统启动子(GG-PIPS)的Greengate矢量收集,使我们能够以单细胞分辨率对免疫途径的局部激活进行成像。使用此系统,我们证明了SA和JA在邻近真菌定植位点的不同的根细胞中彼此之间的空间分开作用,而ET则有助于这两组。sa和et诱导了过度敏感的反应,作为第一道防线,而JA和ET在单独的第二道防线中控制了针对病原体的积极防御。缺乏解决单个细胞水平上植物免疫反应的这种方法,这项工作表明,基于显微镜的方法可以详细了解植物免疫反应。
摘要:在拟南芥中,含环的E3泛素连接酶高表达的高响应基因1(HOS1)是冷信号传导的主要调节剂。在这项研究中,进行了第一个外显子中HOS1基因的CRISPR/CAS9介导的靶向诱变。DNA测序表明,由HOS1的基因组编辑引入的固定插入导致出现过早的停止密码子,从而破坏了开放的阅读框架。将获得的HOS1 CAS9突变植物与SALK T-DNA插入突变体(HOS1-3线)进行了比较,就其对非生物胁迫的耐受性,二级代谢产物的积累和参与这些过程的基因表达水平的积累而言。在暴露于冷应激后,在HOS1-3和HOS1 Cas9植物中都观察到了冷响应基因的耐受性和表达。HOS1突变会导致转化细胞中植物甲状腺素合成的变化。葡萄糖醇(GSL)的含量被1.5次下调,而转基因植物中氟乙醇糖苷的上调为1.2至4.2倍。还改变了拟南芥中次级代谢的相应MYB和BHLH转录因子的转录物丰度。我们的数据表明,HOS1调节的下游信号传导与植物甲壳虫生物合成之间存在关系。