重离子束是一种电离辐射,它已作为一种强诱变剂应用于植物育种,并且是一种诱导大规模缺失和染色体重排的有前途的工具。重离子辐照的有效性可以用线性能量转移 (LET;keV µm -1 ) 来解释。不同 LET 值的重离子束会诱发不同类型和大小的突变。已有研究表明,缺失大小随 LET 值的增加而增大,较高的 LET 辐射会诱发复杂的染色体重排。在本研究中,我们将在拟南芥突变体中检测到的重离子束诱导的缺失定位到其基因组中。我们发现,不同的 LET(100 至 290 keV mm -1 )之间的缺失大小相似,其上限受必需基因分布的影响,并且检测到的染色体重排避免了破坏必需基因。我们还重点研究了串联基因 (TAG),即基因组中两个或多个同源基因相邻。我们的结果表明,100 keV µm -1 的 LET 足以破坏 TAG,并且必需基因的分布会强烈影响与其重叠的突变的遗传性。我们的研究结果提供了拟南芥基因组中大量缺失诱导的基因组视图。
摘要 Er Cas12a 核酸酶,也称为 MAD7,是来自直肠真杆菌的 CRISPR/Cas 系统的一部分,与 Cas12a 核酸酶有远亲关系。由于它与常用的 As Cas12a 仅有 31% 的序列同源性,其知识产权可能不受 Cas12a 核酸酶授予的专利权的保护。因此,Er Cas12a 成为实际应用的一个有吸引力的替代品。然而,Er Cas12a 的编辑效率强烈依赖于靶序列和温度。因此,通过蛋白质工程优化酶活性对于其在植物中的应用尤其有吸引力,因为它们是在较低温度下培养的。基于从 Cas12a 核酸酶优化中获得的知识,我们选择通过引入类似的氨基酸交换来提高 Er Cas12a 的基因编辑效率。有趣的是,这些与 As Cas12a 增强版或 Ultra 版类似的突变均未导致拟南芥中 Er Cas12a 的编辑显著增强。然而,酶假定的 α 螺旋结构中的两个不同突变 V156R 和 K172R 显示出可检测到的编辑改善。通过结合这两个突变,我们获得了改进的 Er Cas12a (im Er Cas12a) 变体,与拟南芥中的野生型酶相比,其活性增加了几倍。该变体在 22°C 时具有很强的编辑效率,通过将培养温度升高到 28°C 可以进一步提高,甚至可以编辑以前无法接近的目标。此外,没有检测到增强的场外活动。因此,im Er Cas12a 是一种经济上有吸引力且有效的植物基因组工程其他 CRISPR/Cas 系统的替代方案。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2024年1月11日发布。 https://doi.org/10.1101/2024.01.10.574527 doi:Biorxiv Preprint
摘要:微生物组在塑造宿主表型中的作用已成为一个关键的研究领域,对生态,进化和宿主健康具有影响。复杂而动态的相互作用涉及植物及其多样化的根际微生物群落受到许多因素的影响,包括但不限于土壤类型,环境和植物基因型。了解这些因素对微生物社区大会的影响是产生特定于植物的宿主特定和强大的好处的关键,但它仍然具有挑战性。在这里,我们对八代拟南芥l和cvi进行了人工生态系统选择实验,以选择与宿主的较高或更低生物量相关的土壤微生物。这导致了由于随机环境变化,植物基因型和生物量选择压力之间复杂的相互作用所塑造的不同微生物群落。在实验的初始阶段,基因型和生物量选择处理具有适中但显着的影响。随着时间的流逝,植物基因型和生物量处理的影响更多,解释了微生物群落组成的约40%。此外,在选择高生物量的选择下,观察到在选择中,观察到在选择中,观察到在选择中,观察到在选择中,观察到了植物生长促进根细菌的基因型特异性关联,labraceae和l er和rhizobiaceae与CVI的基因型相关性。
。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2023年12月1日。 https://doi.org/10.1101/2023.11.29.569073 doi:Biorxiv Preprint
CRISPR/CAS系统作为基因组编辑的生物技术工具的应用已彻底改变了植物生物学。最近,曲目通过CRISPR-kill扩展,通过组织表达消除基因组,从而使CRISPR/CAS介导的组织工程能够。使用金黄色葡萄球菌(SACAS9)的Cas9核酸酶,CRISPR-kill依赖于保守重复基因组区域中多个双链断裂(DSB)的诱导,例如rDNA,从而导致靶细胞的细胞死亡。在这里,我们表明,除了组织特异性表达的空间控制外,在拟南芥中,CRISPR介导的细胞死亡的时间控制是可行的。我们建立了一个化学诱导的组织特异性杀伤系统,该系统允许通过荧光标记同时检测靶细胞。作为概念证明,我们能够消除横向根和消融根干细胞。使用多组织启动子,我们在某些发育阶段在不同器官的定义时间点诱导靶向细胞死亡。因此,使用此系统使得有可能获得对某些细胞类型的发育层的新见解。除了在植物中实现组织工程外,我们的系统还提供了一种宝贵的工具,可以通过位置信号传导和细胞间通信来研究开发植物组织对细胞消除细胞的反应。
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否做了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/ 。知识共享公共领域贡献豁免(http://creativeco mmons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
摘要:定量实时聚合酶链反应(QPCR)是一种广泛使用的方法,用于分析生殖组织中的基因表达模式以及在突变背景中检测基因水平。该技术需要稳定的参考基因才能使靶基因的表达水平归一化。尽管如此,大量出版物继续呈现QPCR结果,该结果标准化为单个参考基因,据我们所知,在拟南芥的特定生殖组织中未对多个参考基因进行比较评估。在此,我们在两个条件套装中评估了十个候选参考基因(UBC9,ACT7,GAPC-2,RCE1,PP2AA3,TUAA2,SAC52,SAC52,SAC52,SAC52,SAC52和His 3.3)的表达稳定水平:在两个条件套件中:一个集合:一个集合:一个跨度开发以及使用不同的基因类别的型型型。使用Reffinder工具进行了稳定性分析,该工具结合了四种统计算法(Genorm,Normfinder,Best Keepere和比较∆ CT方法)。我们的结果表明,RCE1,SAC52和TUA2在不同的发育阶段具有最稳定的表达,而YLS8,His3.3和ACT7是突变研究中归一化的最高级别参考基因。此外,我们通过分析与繁殖有关的基因的表达模式验证了我们的结果,并检查了在已发表的突变背景中这些基因的表达。总体而言,我们为塔利亚纳曲霉的生殖组织提供了适当的参考基因库,这将在这种情况下促进进一步的基因表达研究。更重要的是,我们提出了一个框架,该框架将促进对任何科学领域中基因表达的一致,准确的分析。同时,我们强调了明确定义的相关性,并描述了与qPCR相关的实验条件,以提高科学可重复性。
* 通讯作者:mlong@uchicago.edu (ML);jbergelson@uchicago.edu (JB);huangyuan@mail.kib.ac.cn (YH)。† 资深作者 ‡ 这些作者贡献相同 (YH、JC)。ML、JB 和 YH 设计了这项研究。YH 撰写了论文初稿。YH 和 JC 进行了所有实验,包括表型观察和分析、突变体生成、鉴定、表达、转录组和基因组测序以及进化分析。CD 和 SD 参与了群体遗传分析。CF 提供了植物材料。CF、YO、DL、SX 和 EM 修改了稿件。ML 和 JB 指导了这项研究,构思并监督了写作。根据作者须知 (https://academic.oup.com/plcell) 中所述的政策,负责分发与本文所述研究结果相关的材料的作者是:Manyuan Long (mlong@uchicago.edu)。
病毒-宿主共同进化常常会促使病毒逃逸免疫。然而,植物抗病毒的自然变异是否富含已知赋予植物必需抗病毒防御能力的 RNA 干扰 (RNAi) 途径基因仍不清楚。本文,我们报告了两项全基因组关联研究筛选,以探究野生采集的拟南芥种质对地方性黄瓜花叶病毒 (CMV) 的定量抗性的自然变异。我们证明,在两次筛选中与抗性显着相关的排名最高的基因可调控哥伦比亚-0 生态型中的抗病毒 RNAi。一个对应于减少休眠 5 (RDO5) 的基因通过促进病毒衍生的小干扰 RNA (vsiRNA) 的扩增来增强抗性。有趣的是,第二个基因被指定为抗病毒 RNAi 调节器 1 (VIR1),它抑制抗病毒 RNAi,因此通过 CRISPR/Cas9 编辑使其基因失活可增强 vsiRNA 的产生和 CMV 抗性。我们的研究结果确定了抗病毒 RNAi 防御的正向和负向调节器,它们可能在病毒-宿主共同进化中发挥重要作用。