本文已在米兰举行的第5 silfs研究生会议,2022年帕尔马的AISC中期会议和米兰的ESPP联合会议上发表。我要感谢所有这些会议的观察的观察,他们确实改善了论文。特别感谢(按随机订单)Marco Viola,Giacomo Zanotti,Bruno Cortesi和Arianna Beghetto曾阅读并评论此手稿的各种迭代。最后,我要感谢两位哲学的匿名审稿人和思维科学的评论,对他们的出色而深刻的评论。
手稿收到2019年10月26日;修订了2020年3月9日和2020年3月30日; 2020年4月14日接受。出版日期,2020年4月27日;当前版本的日期2020年9月3日。这项工作得到了中国国家自然科学基金会的部分支持,该基金会根据授予5189084,赠款51975513和赠款51821093,部分由宗教省的自然科学基金会根据Grant LRRR20E050003的授予,部分是由Zhejiang University Special Sci-University Inti-Intientififififififififififififfiffiffiffic Findif Findifif Fiffinfiffiffiffiffiffiffiffiffiffiffienfif Fund。 2020xGZX017,部分是由国家在Grant Sklofp_zz_2002下的国家关键实验室主任基金会主任,部分由008-5116-008-03的Grant K18-508116-008-03的机器人机器人研究所在Grant K18-508116-008-03中的一部分,部分由中国的年轻人计划,部分由MIRA计划,一定程度地由MIRA计划,一定程度地依据由JSPS KAKENHI的一部分,部分由KDDI基金会,部分由KDDI基金会,部分由芬兰学院根据Grant 313448,Grant 313449(预防项目),Grant 316810和Grant 316811(Slim Project)(Slim Project)。(通讯作者:Zhibo Pang。)
由 Emerald 出版。这是已获作者认可的手稿,发行方式为:知识共享署名许可 (CC:BY 4.0)。最终出版版本(记录版本)可在线获取,网址为 DOI:10.1108/jamr-10-2024-0366。请参阅任何适用的出版商使用条款。
c在本演讲中包含的陈述构成了前瞻性陈述。“预期”,“继续”,“估计”,“期望”,“五月”,“意志”,“项目”,“应该”,“相信”,“相信”和类似表达式通常用于识别前瞻性陈述。使用前瞻性陈述反映了我们有关绩效,业务和未来事件的当前观点,期望,估计和/或预测,在本演讲中包括与其他有关的陈述,以及其他信息:关于我们的业务的期望;与我们的业务目标,目标和时间表有关的期望;对医疗市场中AI的期望以及对新知识产权发展的期望。前瞻性陈述是基于当时对我们运营的业务以及行业和市场的预期,预测和假设,包括:不可预见的延误,破坏,市场力量,市场力量,法规或法律,这些延迟,市场力量,法规或法律将阻止我们从事我们的业务;而且我们将能够获得所需的资本。前瞻性陈述不能保证未来的绩效,并且涉及难以预测的风险,不确定性和假设,包括而不受限制:我们可能会遇到无法预料的延误,结构困难或成本,从而影响我们的项目,运营,业务,财务绩效或流动性或流动性;我们将无法推进我们的业务计划或继续运营;我们将无法为运营获得保险;我们将无法保护我们的知识产权;我们将无法开发和商业化,或获得从我们知识产权衍生的产品商业化的监管批准;对我们知识产权开发的产品的监管批准可能会导致重大延误;我们可能不会使用我们的平台获得其他第三方客户;以及与发生民族灾难,敌对行动,战争或恐怖主义行为,我们的声誉,我们的关键人员,竞争,员工关系,在经济状况下的潜在衰退,外汇爆发,货币市场中的流失,货币市场中的流动,政府对国家利益率的变化,我们的投资变化,我们的投资变化,我们的投资变化,我们的投资变化,我们的投资变化,我们的投资变化,我们的投资变化,我们的业务变化可能会变化,加拿大或我们打算运营或打算运营的任何其他国家的控制,法规以及政治或经济发展。
尽管美国已投资于无障碍健康的数据集(例如,我们所有人目前包括近一百万参与者的基因组和临床数据),但需要更多代表性的数据来为所有美国人创建个性化医学。当前数据集的大小不足以发现症状或状况不经常观察到的患者的医学相关模式。有充分的理由相信,从chatgpt到dall-e的生成型AI的课程在其中培训更多的数据导致了极大的结果,同样适用于AI的医疗应用。当我们为医疗保健数据创新AI时,我们必须通过遵循既定的指南和标准(例如,《卫生AI AI的保证标准指南》)来确保质量数据是从个人中提供的。
人工智能 (AI) 及其子领域机器学习 (ML) 的进步几乎体现在生活的每个领域,包括前沿的健康研究。 1,2 然而,研究论文中描述的健康 AI/ML 系统中只有很小一部分进入临床实践。为了解决这个问题,儿童医院 (SickKids) 和 Vector 人工智能研究所 (Vector) 于 2019 年 10 月 30 日组织了 Vector-SickKids 健康 AI 部署研讨会,166 名临床医生、计算机科学家、政策制定者和医疗保健管理人员参加了会议。目的是展示 AI 从研究实验室走向临床的真实案例。演讲者来自加拿大和美国的各种机构,包括圣迈克尔医院、大学健康网络、滑铁卢大学、安大略公共卫生学院、安大略理工大学、密歇根大学、北加州凯撒医疗机构、约翰霍普金斯大学、宾夕法尼亚大学和杜克大学。每个项目所经历的成功和挑战为新兴的健康 AI 领域提供了宝贵的见解。要求每位发言者准备一个结构化的演讲,涉及以下主题:
3。IOMT:前进的连接护理..................................................................................................................................................................................................................................................................................................................................................... 87 6IOMT:前进的连接护理..................................................................................................................................................................................................................................................................................................................................................... 87 6
在撰写本文时,英国脱欧后,英国医疗器械监管正处于过渡阶段。它仍受《2002 年医疗器械法规》(经修订)的约束,该法规将相关欧盟指令转化为英国法律。新的英国监管制度最初是通过《2021 年药品和医疗器械法案》引入的,目的是利用这些权力在 2023 年 7 月 1 日制定次级立法。17 然而,英国政府推迟了这一期限,并延长了之前欧盟标准的适用时间。根据目前的做法,医疗器械根据 CE 标志(欧盟监管标志)被接受进入英国市场,直到 2028 年或 2030 年,具体取决于设备的具体类型。18