摘要:本文通过展示正在进行的项目和该领域的最新发展,概述了人工智能在医疗保健领域的潜在和实际应用,包括将人工智能融入生物技术。通过分析因偏见和遵守数据保护制度的复杂性而引起的问题,提请关注可能的风险和法律挑战。重点仍然是欧盟。本文最后总结了与 covid-19 大流行的相关性以及人工智能为解决危机做出贡献的潜力。 关键词:人工智能;医疗保健;生物技术;个性化治疗;covid-19 摘要:1. 简介 – 1.1 什么是人工智能以及它是如何工作的?– 2. 卫生和科技部门合作的示范项目 – 2.1. InnerEye Microsoft 项目 – 2.2. DeepMind 和 Google Health – 2.3 使用应用程序追踪帕金森病 – 3. 风险和挑战 – 3.1. 算法偏见 –法律问题 – 3.2.1. 数据保护 – 3.2.2. 责任 – 3.3. 其他挑战 – 4. 监管尝试:欧盟 – 5. 结论:与 Covid-19 的相关性 1. 简介
这项工作属于版权。所有权利都是由出版商唯一的,全部由材料的全部或部分授权的,特别是涉及翻译,重新使用,重新使用,插图,朗诵,广播,对微观或以任何其他物理方式或任何其他物理方式,以及传输或信息的存储和电子设置,计算机或计算机或相似的方法,或者以任何其他物理方式的复制,或者使用。使用一般描述性名称,注册名称,商标,服务标记等。在本出版物中,即使在没有特定陈述的情况下,这种名称也不受相关的保护法律和法规的限制,因此也没有暗示,因此可以免费使用。出版商,作者和编辑可以肯定地假设本书中的建议和信息在出版之日被认为是真实而准确的。就本文包含的材料或可能已犯的任何错误或遗漏而言,出版商,作者或编辑都没有提供任何明示或暗示的保修。出版商在已发表的地图和机构之后的管辖权索赔方面保持中立。
阿尔及利亚,安哥拉,亚美尼亚,阿塞拜疆,孟加拉国,白俄罗斯,贝宁,不丹,博茨瓦纳,布鲁斯·达鲁萨拉姆,布尔基纳·法索,布尔基纳·法索,布隆迪,卡梅里亚,喀麦隆,喀麦隆,chad,chad,chad,chad孟加拉国,白俄罗斯,贝宁,不丹,博茨瓦纳,文莱,布尔基纳法索,布隆迪,布隆迪,喀麦隆,喀麦隆,喀麦隆,乍得,科罗斯,科罗斯,科罗斯,科罗斯,迪吉布特,埃及,埃利特里亚 Jordan, Kazakhstan, Kenya, Kuwait, Kyrghyzstan, Laos, Lebanon, Liberia, Liberia, Liberia, Madagascar, Malawi, Mauritius, Molddova, Morocco, Mozambique, Myanmar, Namibia, Nepal, Niger, Nigeria, Oman, Philippines, Qatar, Republic of Congo, Russia, Rwanda, Saudi阿拉伯,塞内加尔,塞内加尔,塞内加尔,塞切尔,索马里,南苏丹,斯里兰卡,苏丹,苏丹,叙利亚,塔吉克斯坦,坦桑尼亚,坦桑尼亚,多哥,多哥,突尼斯,突尼斯,土库曼斯坦,乌干达,乌干达,阿拉伯联合酋长国
现代医疗机构正在经历快速而根本的变化。医生,技术人员和其他医生的需求比以往任何时候都更高,并难以维持相同的护理水平 - 同时同时实施了新的临床和数据存储技术。医疗保健设施越来越复杂,那是在Covid-19迫使他们实施社会疏远和占用限制之前。
Primary Healthcare System Enhancing Project (2024 to 2028) in Sri Lanka, supported by the World Bank ......................................................................................................................................... 20
1。使用AI获得知情的患者同意:从患者那里获得知情同意是执行任何医疗程序之前最重要的一步。但是,根据《印度妇产科和妇科杂志》的报道,在获得同意书之前,只有25%的印度患者对手术进行了完整的简要介绍。此外,在印度的许多医院中,获得知情同意的过程被委派给了像护士这样的医院工作人员,而不是医生本人,以节省后者的时间。此外,许多患者无法理解起草同意书的语言,并且主要签署该表格仅为形式。简要地说,签署的同意书并不意味着已将信息传达给患者。AI来营救医生和患者。除了英语外,还可以用白话语言构建互动聊天机器人,这可以回答所有患者的问题并解决他对在他身上执行的程序的所有恐惧,这对于获得患者的知情同意可以走很长一段路。
贸易/器械名称:Xeleris V 处理和审查系统 法规编号:21 CFR 892.2050 法规名称:图片存档和通信系统 监管类别:II 类 产品代码:LLZ 日期:2020 年 8 月 13 日 收讫日期:2020 年 8 月 18 日 亲爱的 Alexandra Lifshits: 我们已审查了您根据第 510(k) 条提交的上市前通知,该通知表明您有意销售上述器械,并已确定该器械与在 1976 年 5 月 28 日(医疗器械修正案颁布日期)之前在州际贸易中合法销售的同类器械或已根据《联邦食品药品和化妆品法案》(法案)的规定重新分类的器械基本等同,且无需获得上市前批准申请(PMA)批准。因此,您可以营销该器械,但须遵守该法案的一般控制规定。虽然本函将您的产品称为设备,但请注意,一些已获准的产品可能是组合产品。位于 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm 的 510(k) 上市前通知数据库可识别组合产品提交。该法案的一般控制条款包括年度注册、设备列表、良好生产规范、标签以及禁止贴错标签和掺假的要求。请注意:CDRH 不会评估与合同责任担保相关的信息。但我们提醒您,设备标签必须真实且不得误导。如果您的设备被归类(见上文)为 II 类(特殊控制)或 III 类(PMA),则可能会受到其他控制。影响您设备的现有主要法规可在《联邦法规》第 21 篇第 800 至 898 部分中找到。此外,FDA 可能会在《联邦公报》上发布有关您设备的进一步公告。请注意,FDA 发布实质等效性判定并不意味着 FDA 已判定您的设备符合该法案的其他要求或其他联邦机构管理的任何联邦法规和规章。您必须遵守该法案的所有要求,包括但不限于:注册和登记(21 CFR 第 807 部分);标签(21 CFR 第 801 部分);医疗器械报告(医疗器械相关不良事件报告)(21 CFR 803)
抽象的大语言模型(LLM)已成为医疗保健领域的变革性工具,在自然语言理解和产生中表现出了显着的能力。然而,它们在数值推理方面的熟练程度,尤其是在临床应用中的高风险领域,仍然没有得到充实的态度。数值推理在医疗保健应用中至关重要,影响患者的结果,治疗计划和资源分配。本研究研究了在医疗保健环境中数值推理任务中LLM的计算准确性。使用1,000个数值问题的策划数据集,包括诸如剂量计算和实验室结果解释之类的现实世界情景,根据GPT-3体系结构进行了精制LLM的性能。该方法包括及时的工程,事实检查管道的集成以及正规化技术以增强模型的准确性和泛化。关键指标(例如精度,回忆和F1得分)用于评估模型的功效。结果表明总体准确性为84.10%,在多步推理中直接的数值任务和挑战方面的性能提高了。事实检查管道的整合提高了准确性11%,强调了验证机制的重要性。这项研究强调了LLM在医疗保健数值推理中的潜力,并确定了进一步完善的途径,以支持临床环境中的关键决策。当它们成为这些发现旨在为医疗保健的可靠,可解释和上下文相关的AI工具做出贡献。关键字大语言模型(LLMS)·变压器架构·及时工程·精确度·精确·回忆·F1-SCORE 1简介大语言模型(LLMS)已成为人工智能领域的重大进步,证明了在处理和生成人类语言中的显着能力。这些模型由深度学习技术提供支持,在广泛的数据集上进行了培训,并有可能了解语言,细微差别和语言的复杂性。
摘要:本研究彻底回顾了人工智能(AI)在医疗保健中的应用状态,有关不同疾病类型的AI使用趋势,这些疾病类型和问题妨碍了他们的进一步进展。该研究通过通过PubMed数据库找到有关医疗保健中AI的相关当前文章,使用了文献综述和数据分析。这项工作分析了AI在癌症,心血管疾病和神经系统疾病以及医疗保健现实部署中的瓶颈中的使用。研究结果表明,尽管AI证明了提高诊断精度的潜力,但与数据隐私,道德考虑和模型解释性有关的几个障碍仍然存在。总而言之,本综述对医疗保健中AI应用的当前状态进行了评估,并确定了需要进一步调查的关键领域。通过解决这些挑战,可以更有效地开发和广泛地实施未来的创新,最终有助于AI驱动的医疗保健解决方案的进步和优化。
表1:撒哈拉以南非洲医疗保健领域中使用的常见技术表2:远程医疗和远程患者监测计划的非避免列表表3:非详尽的医疗保健操作和管理计划列表