肌萎缩性侧索硬化症(ALS)是一种使皮质,脑干和脊髓运动神经元变性以及在某些情况下是额颞皮质神经元的变性引起的使人衰弱的疾病。神经变性导致进行性肌肉无力,肌肉痉挛,构音障碍,吞咽困难,认知和行为障碍以及其他运动症状。ALS的确切病因尚不清楚,但可能是由于多种遗传(例如C9orf72,TardBP,SOD1,FUS基因)和环境因素引起的。超氧化物歧化酶1(SOD1)基因突变影响约2%的ALS病例,这相当于美国约500例。发作通常发生在50至75岁时,男性的报告比女性更频繁,终身风险分别为0.29%和0.25%。不幸的是,预后较差,中位生存期为2至4年,呼吸不足是最常见的死亡原因。
来自:1 贝勒医学院物理医学与康复系,德克萨斯州休斯顿;2 纽约长老会哥伦比亚与康奈尔医院康复与再生医学系,纽约州纽约市;3 匹兹堡大学医学中心麻醉系、疼痛医学分部,宾夕法尼亚州萨斯奎哈纳;4 德克萨斯大学圣安东尼奥健康科学中心物理医学与康复系,德克萨斯州圣安东尼奥;5 托马斯杰斐逊大学莫斯康复与西德尼金梅尔医学院康复医学系,宾夕法尼亚州费城;6 梅奥诊所麻醉学与围手术期医学系、疼痛医学分部,明尼苏达州罗切斯特;7 麦戈文医学院和 Cy Pain and Spine PLLC 物理医学与康复系,德克萨斯州休斯顿; 8 威斯康星大学医学与公共卫生学院麻醉系、疼痛医学科,威斯康星州麦迪逊
应对考验 在创业初期,Sanjay 和他的团队遇到了许多挑战,这些挑战深刻影响了公司的标准。人才招聘被证明是一个巨大的障碍,顶级量子和人工智能专家的竞争非常激烈。技术障碍比比皆是,特别是在建立量子实验室和改进人工智能模型以满足现实世界的需求方面。在他们应对不断发展的人工智能技术格局时,适应成为关键。在初期阶段获得资金需要对雄心勃勃的想法进行细致的推销和验证。Sanjay 先生说:“每个挑战都是一次学习经历,塑造了公司的文化,使其优先考虑韧性和积极主动地克服障碍。”
我们对临床证据进行了系统的文献检索,以检索系统评价,并从最近的 2 篇评价中选择并报告了与我们的研究问题相关的结果。我们对所选的系统评价进行了文献检索,以确定 2020 年 12 月之后发表的主要研究。我们使用系统评价偏倚风险 (ROBIS) 工具评估每篇纳入系统评价的偏倚风险。我们根据建议分级、评估、制定和评估 (GRADE) 工作组的标准评估了证据的质量。我们进行了系统的经济文献检索,并从公共支付者的角度对 IDDS 与标准治疗(即非 IDDS 疼痛管理方法)进行了成本效益分析。我们还分析了安大略省公共资助 IDDS 对预算的影响。为了了解 IDDS 的潜在价值,我们采访了癌痛患者及其护理人员。我们通过回顾关于使用 IDDS 治疗成人和儿童癌症疼痛的已发表文献以及回顾此项卫生技术评估的其他组成部分来探讨伦理考虑因素,以确定与安大略省情况相关的伦理考虑因素。
摘要 受体介导的药物输送系统是一种很有前途的工具,可用于靶向恶性细胞以抑制/抑制恶性肿瘤而不干扰健康细胞。基于蛋白质的纳米载体系统在输送各种化疗药物(包括治疗性肽和基因)方面具有许多优势。在这项研究中,我们制造了葡萄糖结合的喜树碱负载的谷蛋白纳米粒子 (Glu-CPT-谷蛋白 NPs),以通过 GLUT-1 转运蛋白将喜树碱输送到 MCF-7 细胞。首先,通过还原胺化反应成功合成了谷蛋白结合的谷蛋白聚合物,并通过 FTIR 和 13 C-NMR 证实了这一点。然后,将喜树碱 (CPT) 负载到谷蛋白结合的谷蛋白聚合物中,形成谷蛋白结合的谷蛋白 NPs。研究了纳米粒子的药物释放能力、形态形状、大小、物理性质和 zeta 电位。制备的 Glu-CPT-谷蛋白 NPs 呈球形,本质上为无定形,尺寸范围为 200 nm,zeta 电位为 −30 mV。此外,使用 Glu-CPT-谷蛋白 NPs 进行的 MTT 测定证实了处理 24 小时后对 MCF-7 细胞具有浓度依赖性细胞毒性,IC 50 为 18.23 μg mL −1。体外细胞摄取研究表明 Glu-CPT-谷蛋白 NPs 可增强内吞作用并在 MCF-7 细胞中递送 CPT。用 IC 50 浓度的 NPs 处理后发现典型的凋亡形态变化,即凝聚核和扭曲的膜体。从 NPs 中释放的 CPT 也靶向 MCF-7 细胞的线粒体,显著增加活性氧水平并导致线粒体膜完整性的损伤。这些结果证实,小麦谷蛋白可以积极地充当重要的运载载体并增强这种药物的抗癌潜力。
本论文工作是科科迪大学(科特迪瓦阿比让)动物学和动物生物学实验室、雷恩大学认知和传播研究中心 2、UMR 6552 之间合作的结果- 雷恩大学动物和人类行为学实验室1、苏格兰圣安德鲁斯大学(英国)心理学实验室和瑞士研究中心通过泰猴项目 (TMP) 进行科学研究。因此,在这项工作结束时,我们首先感谢这些机构的负责人,他们同意合作,以使这项工作取得成果。我们特别感谢 Alban LEMASSON 博士和 Klaus ZUBERBUHLER 教授,感谢他们使这次合作成为可能,最重要的是感谢他们严谨地设计和遵循了这项工作。感谢他们的信任和财力、物质上的支持。我要感谢 Jean Emile GOMBERT 和 Eliezer Kouakou N'GORAN 教授对我的论文的指导、他们的可用性以及对实现和完成这项工作的坚定支持。我对 Martine HAUSBERGER 博士表示深深的谢意,感谢她在整个写作过程中欢迎我加入她的 UMR 6552(动物和人类行为学)单位,并同意担任本论文的报告员。我很自豪 Julia FISCHER 教授迅速而愉快地同意担任本论文的报告员并担任我的评审团成员。感谢您给予的荣誉。我谨向 Agnès LACROIX 博士表示感谢,感谢她同意担任我的评审团成员。也感谢她在写作过程中的支持。感谢 Antoine Némé TAKO 教授自发同意担任评审团成员。我们非常感谢他的空闲
鞘内给药涉及向脊髓蛛网膜下腔注射药物,目前已有可编程的植入式鞘内药物输注系统用于治疗慢性疼痛(图 1)。1982 年,Shiley Infusaid Inc. 生产的 Infusaid 泵是美国首个用于鞘内给药治疗慢性疼痛的植入式连续输注泵。此后,首个用于鞘内给药的植入式可编程泵于 1991 年获得美国食品药品监督管理局 (FDA) 批准,即美敦力公司的 SynchroMed 泵。
使用基于纳米技术的载体递送抗癌药物组合已成为有效治疗癌症的重要策略。1,2 纳米级尺寸的递送载体还受益于增强渗透性和保留 (EPR) 效应,这使得药物能够选择性地递送到肿瘤细胞中。3 联合疗法可以协同多种药物作用机制,降低全身毒性并抑制耐药性。4-6 协调多种治疗剂细胞摄取的一种策略依赖于封装在单个递送载体中,例如脂质体或聚合物纳米颗粒。7-9 然而,使用具有不同物理化学特性(例如大小、电荷和/或溶解度)的药物来配制这些系统一直很困难,并且通常会产生表现出不可预测的释放速率和不协调的药物生物分布的系统。10 共价
脑膜炎会损伤大脑半球、脑神经、脊髓及相关神经根,导致患者整体状况逐渐恶化,如不及时治疗,将迅速导致死亡。即使采用最大限度的治疗,脑膜炎确诊后的中位生存期也仅从 1-3 个月增加至 3-11 个月(1、2、4),其中分子靶向治疗是主要因素。靶向治疗是靶向突变脑膜炎患者的首选,而化疗是野生型患者的首选(3)。脑膜炎化疗方案的标准治疗和贝伐单抗和培美曲塞等新药的作用尚未确定(5)。此外,全脑放疗 (WBRT) 的生存获益仍存在争议(6、7)。在适当的治疗下,鞘内化疗 (ITC) 可提供令人满意的反应率和生存获益,一项汇总研究报告的中位生存期为 7.5 个月(8)。然而,非靶向突变的化疗后患者进展和带有可操作突变的靶向治疗后患者进展可能迅速恶化。对于表皮生长因子受体(EGFR)突变的难治性 LM(rLM)患者,高剂量厄洛替尼(9)的中位总生存期(mOS)为 6.2 个月,标准剂量奥希替尼为 7.2 个月,高剂量奥希替尼为 11.0 个月(10,11)。目前关于 rLM 的文献主要集中在 EGFR 突变患者,定义为经典或常规剂量靶向治疗后的进展,主要在第一代或第二代靶向药物治疗后出现。但随着三代靶向药物的批准和广泛使用,对 rLM 定义的差异导致试验中患者特征不尽相同,从而产生不同的生存结果。目前,rLM 缺乏标准定义,亦无标准的治疗指南。
方法:要求二十五个经验丰富的麻醉提供者使用3种不同的方法来制备布比卡因2.0 mg/mL和吗啡60μg/ml的混合物,尽可能清洁,精确。使用的第四种方法是药房制备的安木木的抽吸。通过高压液相色谱(HPLC)测量吗啡和布比卡因的浓度。将药物用于细菌污染。结果:第1组(中值60μg/ml; 95%CI:59 - 110μg/ml)产生了30μg/ml吗啡浓度以上的3个异常值。第2组(76μg/ml; 95%CI:72 - 80μg/ml)和3(69μg/ml; 95%CI:66 - 71μg/ml)始终高于目标浓度60μg的目标浓度。组“药房”是精确且准确的(59μg/ml; 95%CI:59 - 59μg/ml)。第2组和“药房”具有一个受孢子形成的有氧革兰氏阳性杆的污染样品。