必须使用经过验证的医用/药房疫苗冰箱,以确保所储存的疫苗保持在 +2°C 至 +8°C 的温度范围内。疫苗冰箱的理想温度为 5°C,这确保有 ±3°C 的余地。有时冰箱温度可能会波动,例如在库存周转期间。如果发生这种情况,请采取以下措施:记录温度监测图,并确保温度在 20 分钟内恢复到 +2°C 至 +8°C 的范围。冰箱温度应每天至少检查一次,每天最多检查两次,并记录在温度监测图上(附录 2)。如果使用冷藏箱,则必须对其进行验证,并确保记录和监测温度。建议使用数字温度计来记录温度,因为它们可以提供更准确的读数。理想情况下,温度计应使用位于库存中心的探针。服务提供商应确保按照冰箱制造商的指导重新设置和更换温度计。
通过固相反应制备了 Nd 3 + 掺杂的 Y 3 Al 2 Ga 3 O 12 石榴石陶瓷颗粒,并以此为原型研究 Nd 3 + 激活石榴石荧光粉作为低温和高温范围玻尔兹曼温度计的潜力。尽管近红外发射 Nd 3 + 激活荧光粉通常用于生物应用,但它们的实际用途受到生理温度范围内低灵敏度的阻碍。相反,100 800 K 范围内的光致发光分析在低温和高温范围内都表现出有趣的性能。事实上,通过利用 4 F 3 / 2 的斯塔克能级(Z 能级)以及 4 F 5 / 2 和 4 F 3 / 2 激发态的发射率,可以在同一材料中构建两个可靠的玻尔兹曼温度计,分别在低温范围(100 220 K)和高温(300 800 K)下工作。
引言 多年来,在辐射测温领域已进行了许多次国际温标比对。这些比对涉及钨带灯 1,2 、辐射温度计 3,4 或最近的金属碳共晶定点 5,6 的转移,旨在比较不同国家计量机构 (NMI) 的 ITS-90(1990 年国际温标)实现情况。每个实验室的温标实现都被赋予了不确定度,考虑到定点测量以及实现中所用任何人工制品的校准和测量不确定度等因素(例如,辐射温度计的线性度、稳定性、校准、光谱响应和源尺寸效应 (SSE);钨带灯或黑体辐射源的校准和稳定性),以得出温标实现的总体不确定度 7 。 EUROMET 658 项目旨在通过比较每个参与者使用其实验室常用方法进行的测量结果来调查温度标度实现中某些基本参数(辐射温度计的 SSE、线性度和光谱响应)的不确定性。此外,还要求参与者使用其研究所常用的软件计算多种不同设计的黑体腔的发射率。这样做是为了投资
不允许使用其他类型的温度计。该设备必须具备以下特点: □ 热缓冲器中的温度探头* □ 可从设备外部轻松读取的有效当前、最小和最大温度显示器 □ 超范围温度警报和低电池指示器 □ 精度为 +/- 1° F (0.5° C) □ 用户可编程的记录间隔(或读数速率),至少每 30 分钟测量和记录一次温度 □ 每个存储疫苗的冰箱和冰柜都需要一个温度计 □ 温度计必须放在存储单元的中心区域 □ 温度计必须具有由适当实体颁发的最新有效校准证书† □ 设施需要一个带有最新校准证书的备用电池供电的数字数据记录器† * 超低温数字数据记录器(一些辉瑞 COVID-19):为了准确监测超低温,必须使用空气探头或专门为超低温设计的探头
镜片、面罩安全帽组合、防尘面具、颗粒过滤器、压缩空气软管、空气调节阀、数字温度计、磁铁、防护伞、导电嘴、MIG/TIG 焊枪备件、焊后清洁-蚀刻-抛光机等...
(12)多功能低温高磁场温度计:薄膜金属陶瓷的低温磁电阻,NA Gershenfeld、J. VanCleve、MJ Graf、NA Fortune 和 JS Brooks,第 18 届低温物理国际会议论文集,日本应用物理学杂志增刊(26-3),第 1741 页(1987 年)。
摘要 RNA 的结构变化是控制基因表达的重要因素,不仅在转录后阶段,而且在转录过程中也是如此。位于初级转录本 5' 区域的核糖开关和 RNA 温度计的子类通过提前终止转录来调节下游功能单元(通常是 ORF)。此类元素不仅自然存在,而且在合成生物学中也是颇具吸引力的装置。因此,设计此类核糖开关或 RNA 温度计的可能性具有相当大的实际意义。由于这些功能性 RNA 元素在转录过程中已经起作用,因此重要的是模拟和了解折叠的动力学,特别是与转录同时形成的中间结构。因此,在进行昂贵且劳动密集型的湿实验室实验之前,共转录折叠模拟是验证设计构造功能的重要步骤。对于 RNA,由于分子的大小和感兴趣的时间尺度,全面的分子动力学模拟远远超出了实际范围。即使在简化的二级结构级别,也需要进一步的近似。 BarMap 方法基于表示二级结构景观
温度测量 1.0 简介 当今工业环境中的温度测量涵盖了各种各样的需求和应用。为了满足这些广泛的需求,过程控制行业开发了大量的传感器和设备来满足这一需求。在这个实验中,您将有机会了解许多常见传感器的概念和用途,并实际使用这些设备进行实验。 对于大多数机械工程师来说,温度是一个非常关键且广泛测量的变量。许多过程必须具有受监控或受控的温度。这可以是简单的发动机或负载设备水温监控,也可以是复杂的激光焊接应用中的焊缝温度监控。可能需要监控更困难的测量,例如发电站或高炉烟囱气体的温度或火箭的废气温度。更常见的是过程或过程支持应用中的流体温度,或机械中的金属板、轴承和轴等固体物体的温度。 2.0 温度测量的历史 如今,使用的温度测量探头种类繁多,具体取决于您要测量的内容、您需要的测量精度、您需要将其用于控制还是仅用于人工监控,或者您是否可以触摸您要监控的内容。 温度测量可分为几大类:a) 温度计 b) 探头 c) 非接触式温度计是该组中最古老的。 测量和量化某物温度的需求始于公元 150 年左右,当时盖伦根据四个可观察的量确定了某人的“肤色”。 直到 16 世纪科学发展之后,“温度计”的实际科学才发展起来 第一台真正的温度计是《自然魔法》(1558、1589)中描述的空气温度计。该装置是当前玻璃温度计的前身。到 1841 年为止,共有 18 种不同的温标在使用。仪器制造师丹尼尔·加布里埃尔·华伦海特从丹麦天文学家奥勒·罗默那里学会了校准温度计。1708 年至 1724 年间,华伦海特开始使用罗默温标制作温度计,然后将其修改为我们今天所知的华氏温标。华伦海特通过将储液器改为圆柱体,并用水银代替早期设备中使用的酒精,大大改进了温度计。这样做是因为它具有近乎线性的热膨胀率。他的校准技术是商业机密,但众所周知,他使用海盐、冰和水混合物的熔点和健康男性腋窝温度作为校准点。当
温度测量 1.0 简介 当今工业环境中的温度测量涵盖了各种各样的需求和应用。为了满足这些广泛的需求,过程控制行业开发了大量的传感器和设备来处理这一需求。在本实验中,您将有机会了解许多常见传感器的概念和用途,并实际使用这些设备进行实验。对于大多数机械工程师来说,温度是一个非常关键且广泛测量的变量。许多过程必须具有受监控或受控的温度。这可以是对发动机或负载设备的水温的简单监控,也可以是像激光焊接应用中的焊缝温度一样复杂的监控。可能需要监控更困难的测量,例如发电站或高炉烟囱气体的温度或火箭的废气温度。更常见的是工艺或工艺支持应用中的流体温度,或机器中固体物体(如金属板、轴承和轴)的温度。2.0 温度测量的历史 如今,使用的温度测量探头种类繁多,具体取决于您要测量的内容、需要测量的准确度、是否需要将其用于控制或仅用于人工监控,或者您是否甚至可以触摸要监控的内容。温度测量可分为几大类:a) 温度计 b) 探头 c) 非接触式温度计是该组中最古老的。测量和量化某物温度的需求始于公元 150 年左右,当时盖伦根据四个可观察的量确定了某人的“肤色”。直到 16 世纪科学发展起来,‘温度计’这一实际科学才开始发展。第一台实际温度计是《自然魔法》(1558 年、1589 年)中描述的空气温度计。这种装置是当前玻璃温度计的前身。到 1841 年为止,共有 18 种不同的温标在使用。仪器制造商 Daniel Gabriel Fahrenheit 从丹麦天文学家 Ole Romer 那里学会了校准温度计。1708 年至 1724 年间,Fahrenheit 开始使用 Romer 温标生产温度计,然后将其修改为我们今天所知的华氏温标。华氏通过将容器改为圆柱体并用水银代替早期设备中使用的酒精,极大地改进了温度计。这样做是因为它具有近乎线性的热膨胀率。他的校准技术是商业秘密,但众所周知,他使用了海盐、冰和水混合物的熔点和健康男性腋窝温度的某种混合物作为校准点。当