参考文献................................................................................................................387 附录.................................................................................................................401 附录 A.虚拟实验室中包含的实验室结构和设备.......................................................................................401 附录 B.试点研究培训任务.................................................................................403 附录 C. 试点研究虚拟实验室任务工作表.......................................................406 附录 D. 试点研究实验室手动任务工作表.......................................................410 附录 E. 试点研究测试....................................................................................................413 附录 F. 试点研究问卷....................................................................................422 附录 G. 试点研究信息声明和同意书.....................................................................431 附录 H. 调查 1 用户控制命令摘要.....................................................................437 附录 I.调查 1 任务工作表.....................................................................................439 附录 J.调查 1 测试.....................................................................................441 附录 K. 调查 1 信息声明和同意书表格....................450 附录 L. 调查 2 用户控制命令摘要和练习.......................................................................................................................457 附录 M. 调查 2 用户控制任务工作表.....................................................................................460 附录 N. 调查 2 动态视图和静态视图任务工作表.......................................................................463 附录 O.调查 2 测试.........................................................................................................466 附录 P. 调查 2 实验室任务观察笔记....................................................................................473 附录 Q.调查 2 问卷.............................................................................................476 附录 R. 调查 2 信息声明和同意书....................................................................................479 附录 S. CD-ROM 内容和安装说明.....................................................................................483 附录 T. VRML 原型.....................................................................................................484
在过去十年中,我们见证了神经假体的快速发展,神经假体是一种将大脑与外部辅助和康复设备连接起来的系统。虽然这项工作主要研究的是能够实现手臂和手部感觉运动功能的神经假体,但人们对恢复运动能力(即在空间中移动的能力)的神经假体的兴趣也日益浓厚。大脑控制的轮椅和外骨骼就是这种神经假体的例子。本研究主题中的文章集合介绍并讨论了现有证据、概念框架、神经假体设计和有关将神经假体应用于步态辅助和康复的实际问题。研究主题涵盖了一系列问题,例如控制方案、机器人方面、有效性、运动性能特征、神经基础、伦理、对神经系统疾病的重要性、运动学习和运动功能恢复。这些贡献总结如下,分为 7 个主题类别:(i)评论和观点,(ii)动物研究,(iii)平衡控制,(iv)运动假肢,(v)肌电控制,(vi)基于脑电图 (EEG) 的下肢假肢控制系统,以及(vii)脊髓神经调节和外骨骼步态训练对瘫痪患者的综合影响。
摘要 — 由于肌电人机界面的局限性,对具有多关节腕部/手部的上肢假肢进行灵巧控制仍然是一个挑战。多种因素限制了这些界面的整体性能和可用性,例如需要按顺序而不是同时控制自由度,以及从虚弱或疲劳的肌肉中解读用户意图的不准确性。在本文中,我们开发了一种新型人机界面,该界面赋予肌电假肢 (MYO) 人工感知、用户意图估计和智能控制 (MYO-PACE),以在准备假肢进行抓取时持续为用户提供自动化支持。我们在实验室和临床测试中将 MYO-PACE 与最先进的肌电控制 (模式识别) 进行了比较。为此,八名健全人和两名截肢者进行了一项标准临床测试,该测试由一系列操纵任务(SHAP 测试的一部分)以及在杂乱场景中更复杂的转移任务序列组成。在所有测试中,受试者不仅使用 MYO-PACE 更快地完成了试验,而且还实现了
下肢截肢经历的个体在没有功能性肌肉的情况下降低了踝关节推断,导致步行性能降低。常规的能源存储和回报(ESR)假体在中场期间存储机械能,并在步态的末端立场阶段返回该能量,从而部分补偿。这些假肢可以提供大约30%的健康脚踝 - 步行过程中脚执行的推断工作。返回更多规范性机械能水平的新型假体可以改善步行性能。在这项工作中,我们设计了一个脱钩的ESR(DESR)假体,该假体将通常在脚跟撞击和加载响应下消散的能量,并在终端立场期间返回这种能量,从而增加了假体所做的机械推断工作。通过在产生不同的非线性扭矩 - 角度力学的两个不同的CAM轮廓之间切换来实现此解耦。凸轮通过自定义磁切换系统在步态周期中的关键点自动互换。台式表征证明了能量存储和返回的成功解耦。DESR机制能够在脚跟打击和加载响应时捕获能量,并在步态周期后期将其返回,但是这种回收不足以克服机械损失。除了其回收能量的潜力外,DESR机制还可以实现独特的机械可定制性,例如在挥杆阶段的脚趾间隙中的背屈,或提高推断时的能量释放速率。
在法律规定的某些条件下,图书馆和档案馆有权提供复印件或其他复制品。这些规定条件之一是,复印件或复制品不得“用于除私人学习、学术或研究以外的任何目的”。 如果用户请求或随后将复印件或复制品用于超出“合理使用”范围的目的,则该用户可能要承担侵犯版权的责任,
请注意以下几点: 版权所有者有权对侵犯其版权的人采取法律行动。 复制受版权保护的材料可能构成版权侵权。如果复制此类材料时未注明作者、虚假注明作者或以贬损的方式对待作者,则可能违反《1968 年联邦版权法》第 IX 部分所规定的作者道德权利。 法院有权对《1968 年联邦版权法》规定的侵犯版权、侵犯道德权利和其他违法行为施加广泛的民事和刑事制裁。对于涉及将材料转换为数字或电子形式的违法行为和侵权行为,可能会施加更严厉的处罚,并判处更高的赔偿金。
请注意以下几点: 版权所有者有权对侵犯其版权的人采取法律行动。 复制受版权保护的材料可能构成版权侵权。如果在未注明作者的情况下复制此类材料、虚假注明作者或以贬损的方式对待作者,则可能侵犯《1968 年联邦版权法》第 IX 部分所规定的作者精神权利。 根据《1968 年联邦版权法》,法院有权对侵犯版权、侵犯精神权利和其他违法行为施加广泛的民事和刑事制裁。对于涉及将材料转换为数字或电子形式的违法行为和侵权行为,可能适用更严厉的处罚,并可能判处更高的损害赔偿。
摘要 — 为了提供适当程度的刺激,必须根据个人的感知阈值校准视网膜假体(“系统适配”)。然后可以停用无功能电极以降低功耗并改善视觉效果。然而,阈值不仅在不同电极之间变化很大,而且随着时间的推移也会变化很大,因此需要更灵活的电极停用策略。在这里,我们提出了一个可解释的人工智能 (XAI) 模型,该模型适用于大型纵向数据集,可以 1) 根据常规临床测量(“预测因子”)预测制造商选择在哪个时间点停用电极;2) 揭示这些预测因子中哪些最重要。该模型根据临床数据预测电极停用的准确率为 60.8%。使用系统适配数据时性能提高到 75.3%,当有后续检查的阈值时性能提高到 84%。该模型进一步确定了受试者的年龄和失明发作时间是电极停用的重要预测因子。依赖于常规临床措施的电极失活的精确 XAI 模型可能使视网膜植入物和更广泛的神经假体界受益。
纳入标准应与评价问题相符,且易于识别。PICO 的必要要素应明确定义。纳入标准应详细,纳入的评价应与所述纳入标准相匹配,且符合条件。荟萃分析的评估人员会发现纳入标准可能包括进行统计分析的能力标准,而这并不是系统评价的常态。纳入研究的类型应与评价问题相关,例如,旨在总结一系列针对老年痴呆症患者攻击性行为的有效非药物干预措施的综合评价将仅限于包括综合评估各种干预措施的定量研究的系统评价和荟萃分析;定性或经济评价将不予纳入。
本文探讨了神经递质多巴胺、谷氨酸和γ-氨基丁酸 (GABA) 导致精神分裂症的假设,并得出结论:谷氨酸影响多巴胺和 GABA 的联合模型是最合理的解释机制。多巴胺假说得到了证据的支持,即精神分裂症患者的特定大脑区域的多巴胺受体和神经递质明显增加和减少。此外,针对多巴胺受体的药物已成功减轻了精神分裂症症状。谷氨酸假说认为神经递质谷氨酸是这种疾病的基础,因为影响 NMDA(谷氨酸)受体已被证明会导致积极和消极的精神分裂症症状,包括仅在精神分裂症中出现的视觉和听觉症状。此外,与 NMDA 受体和精神分裂症相关的几个基因存在遗传关联。 GABA 模型也被探索,因为篡改与 GABA 相关的细胞已被证明会诱发精神分裂症症状,尽管这可以解释为与谷氨酸模型的结合,而不是对立。单独考虑时,这些假设是有缺陷的。多巴胺模型无法解释负面的精神分裂症症状,针对多巴胺受体的药物仍然无法完全减轻自我报告的症状。同样,谷氨酸模型可能是由不规则的 GABA 量引起的,谷氨酸假说也可能解释针对多巴胺的治疗的积极作用。有证据表明,导致 NMDA 受体功能下降的药物会导致多巴胺功能障碍。结合多巴胺和谷氨酸参与的有力证据,最合理的模型是 NMDA 功能障碍导致 GABA 和多巴胺受体问题。