婴儿的社会认知能力在生命的第一年中显着发展。从个体发育的角度来看,社会行为的早期发展允许亲子依恋,从而增强了生存。因此,理论上,由社会大脑网络驱动的社会行为发展构成了此期间发展的核心。此外,了解社会发展期间神经网络内的成熟对于更好地掌握社会发育障碍的发展至关重要。因此,我们在5个月和10个月的时间左右进行了一项纵向研究,以绘制婴儿处理社交和非社会视频时大脑中功能网络的发展。使用脑电图,我们专注于最常见的社会行为频段:theta和alpha。我们发现,在生命的第一年,阿尔法网络保持相对稳定,对社交与非社会刺激没有选择性,Theta网络表现出强烈的全球重新调节。Theta网络的发展从婴儿早期的顶枕网发展到了第一年生命的末期。这种重新构造与对社交和非社会刺激的选择性相吻合,在观看社交视频与非社会视频时,婴儿将接近第一年的生命结束,显示出Theta沟通的同步性增加。我们的发现提供了有力的证据,证明了额叶theta网络参与社会大脑的发展。
在对风险管理违规行为的调查结束后,分会状态更改为带指令的缓刑。科罗拉多矿山 2024 年 9 月 26 日 SUBJECT_SUSPENSION 在分会受到欺凌指控且调查正在进行后,分会状态发生变化。科罗拉多矿山 2024 年 10 月 25 日 GOOD_STANDING 在对风险管理实践的调查结束后,分会状态已收到指令,但更改为良好信誉。康涅狄格州 2024 年 10 月 10 日 PROBATION 在暂停状态结束后,分会状态更改为带指令的缓刑。康奈尔大学 2024 年 8 月 20 日 SUBJECT_SUSPENSION 由于未能达到新成员教育评估流程的最低要求,分会状态发生变化。新成员教育运营暂停,直至符合预期。康奈尔大学 2024 年 8 月 27 日 GOOD_STANDING 在完成新成员教育评估流程的要求后,分会状态更改为良好信誉。 DePauw 2024 年 8 月 20 日 SUBJECT_SUSPENSION 由于未能达到新会员教育评估流程的最低要求,分会状态发生变化。新会员教育业务暂停,直至符合预期。 DePauw 2024 年 8 月 23 日 GOOD_STANDING 在完成新会员教育评估流程的要求后,分会状态更改为良好状态 Drexel 2024 年 8 月 20 日 SUBJECT_SUSPENSION 由于未能达到新会员教育评估流程的最低要求,分会状态发生变化。新会员教育业务暂停,直至符合预期。
几十年来,农杆菌介导的转化一直是生成转基因植物的首选工具。在此过程中,携带转基因的 T-DNA 从细菌转移到植物细胞中,在那里它通过聚合酶θ (Pol h ) 介导的末端连接 (TMEJ) 随机整合到基因组中。通过同源重组 (HR) 将 T-DNA 靶向到特定基因组位点也是可能的,但此类基因靶向 (GT) 事件发生的频率很低,并且几乎总是伴随着随机整合事件。另一个复杂因素是,T-DNA 和目标位点重组的产物可能不仅映射到目标位点 (真正的 GT),还可能映射到基因组中的随机位置 (异位 GT)。在本研究中,我们通过使用突变了 TEBICHI 基因(该基因编码 Pol h )的拟南芥,研究了 TMEJ 功能如何影响植物中 GT 的生物学。在 TMEJ 功能强大的植物中,我们主要发现 GT 事件伴随着随机的 T-DNA 整合,而在 teb 突变体背景下获得的 GT 事件缺乏额外的 T-DNA 拷贝,证实了 Pol h 在 T-DNA 整合中的重要作用。Pol h 缺乏也会阻止异位 GT 事件,这表明导致此结果的事件序列需要 TMEJ。我们的研究结果提供了可用于制定在农作物中获得高质量 GT 事件的策略的见解。
摘要 在他人注视方向和所观察物体之间建立联系的能力对社会认知和学习的发展具有重要意义。在本研究中,我们通过实施面对面的现场范式分析了一组 9 个月大婴儿的 alpha 和 theta 波段振荡,该范式为婴儿提供了与真实人类的三元社会互动。我们比较了两种实验条件下的神经激活情况:物体出现后的一致和不一致凝视转移。在不一致物体注视转移条件下,我们观察到与一致条件相比,theta 功率有所增加。我们还发现,在一致物体注视条件下,alpha 活动比不一致物体注视条件下有所增强。这些发现证实了当他人的目光转向参考目标时,theta 和 alpha 波段活动参与了对目光的检测。我们认为 theta 波段调节可能与意外事件的处理有关。此外,在一致物体凝视条件下,alpha 波段活动的增加似乎与之前关于生命第一年之前出现的内部控制注意力机制的研究结果一致。与非现场标准范式相比,现场范式的实施引发了部分不同的振荡模式,支持了重现现实生活条件的生态设置对于研究社会认知发展的重要性。
神经工程领域的最新进展使得神经假体得以开发,这有助于神经系统疾病患者的功能恢复。在这项研究中,我们提出了一个实时神经形态系统来人工重现海马体 CA1 区域不同神经元群的 θ 波和放电模式。海马 θ 振荡(4-12 Hz)是一种重要的电生理节律,有助于导航、记忆和新颖性检测等各种认知功能。提出的 CA1 神经模拟电路包括现场可编程门阵列 (FPGA) 上的 100 个线性化的 Pinsky-Rinzel 神经元和 668 个兴奋性和抑制性突触。实施的 CA1 脉冲神经网络包括产生 θ 节律的主要神经元群:兴奋性锥体细胞、PV+ 篮状细胞和抑制性中间神经元 Oriens Lacunosum-Moleculare (OLM) 细胞。此外,还使用突发漏积分和放电 (LIF) 神经元模型在 FPGA 上实现了通过穿通通路从内嗅皮层到 CA1 区域、通过 Schaffer 侧支到 CA3 区域以及通过穹窿海马伞到内侧隔膜到 CA1 区域的主要输入。硬件实现的结果表明,所提出的 CA1 神经模拟电路成功重建了 theta 振荡,并在功能上说明了不同神经元群体放电反应之间的相位关系。还评估了内侧隔膜消除对 CA1 神经元群体放电模式和 theta 波特征的影响。该神经形态系统可被视为一个潜在平台,为未来神经假体应用开辟了机会。© 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
tumefaciens介导的转化一直是生成转基因植物的首选工具。在此过程中,携带转基因的T-DNA从细菌转移到植物细胞,在该细菌中,它通过聚合酶theta(Pol H)介导的末端连接(TMEJ)随机地整合到基因组中。通过同源重组(HR)将T-DNA靶向特定的基因组基因座(HR),但这种基因靶向(GT)事件以低频发生,几乎总是伴随着随机整合事件。另一个复杂性是,T-DNA和目标基因座之间的重组的乘积不仅可以映射到目标基因座(TRUE GT),还可以映射到基因组中的随机位置(异位GT)。在这项研究中,我们通过使用用于Tebichi基因的Tebichi Gene突变的拟南芥,研究了TMEJ功能如何影响植物中GT的生物学,该基因编码为polH。虽然在TMEJ-Profientient植物中,我们主要发现GT事件伴随着随机T-DNA整合,而在TEB突变体背景中获得的GT事件缺乏其他T-DNA拷贝,从而证实了POL H在T-DNA整合中的基本作用。pol H的表现也阻止了异位GT事件,这表明导致此结果的事件顺序需要TMEJ。我们的发现提供了见解,可用于制定策略以获得农作物中的高质量GT事件。
主动导航似乎比被动导航能产生更好的空间知识,但目前还不清楚主动决策如何影响学习和记忆。在这里,我们研究了 θ 振荡对记忆相关探索的贡献,同时测试了有关其如何促进主动学习的理论。使用脑电图 (EEG),我们对个体进行了迷宫学习任务测试,在该任务中,他们在迷宫的每个选择点对探索位置做出离散决策。一半参与者可以在每个选择点自由做出主动决策,另一半则通过在每个交叉点选择标记选项(与主动探索相匹配)进行被动探索。至关重要的是,所有决策都是在静止时做出的,将主动决策过程与运动和速度因素分离开来,这是 θ 振荡的另一个突出的潜在作用。然后通过在迷宫中从物体 A 移动到物体 B 来测试参与者对迷宫的了解。结果显示,在学习过程中,主动决策具有优势,并且表明主动组在探索的选择点(尤其是在中额叶通道)中具有更大的 θ 功率。这些发现表明,主动探索与人类空间导航过程中的 θ 振荡有关,并且这些振荡不仅仅与运动或速度有关。结果表明前额叶区域的 θ 振荡增加表明与海马体的沟通以及将新信息整合到记忆中。我们还发现了主动导航过程中 alpha 振荡的证据,表明注意力也发挥了作用。这项研究支持 θ 振荡在导航学习过程中具有一般的助记作用。
摘要 心流被定义为一种认知状态,与自动和毫不费力的控制感有关,能够在极具挑战性的情况下达到最佳表现。在体育运动中,心流可以通过正念训练得到增强,而正念训练与额叶 θ 活动(4-8 Hz)有关。此外,研究表明,额叶-中线 θ 振荡可促进多种认知任务中的控制过程。先前的 θ 神经反馈训练研究表明,一次训练足以提高运动表现,本研究基于此调查了一次 30 分钟的额叶-中线 θ 神经反馈训练是否 (1) 在手指敲击任务中除了运动表现外还能增强心流体验,以及 (2) 是否转移到 n-back 任务中的认知控制过程。在神经反馈训练期间能够成功上调 θ 活动的参与者(反应者)在训练后表现出比未增强 θ 活动的参与者(无反应者)更好的运动表现和心流体验。在所有参与者中,训练期间 θ 活动的增加与从训练前到训练后的运动表现增强有关,而与训练前的表现无关。有趣的是,θ 训练收益也与流动体验的增加有关,即使控制了相应的运动表现增加也是如此。n-back 任务的结果并不显著。尽管这些发现主要是相关的,需要研究其他促进流动的影响,但目前的发现表明,额叶-中线 θ 神经反馈训练是一种有前途的工具,可以支持流动体验,并对提高表现有额外的相关性。
摘要 简介:有必要确定客观的皮质电生理相关因素,以缓解疼痛,从而可能有助于更好地管理疼痛。然而,开发用于缓解疼痛的大脑生物标志物领域仍未得到充分探索。 目的:本研究的目的是研究与缓解慢性疼痛相关的皮质电生理相关因素。疼痛缓解的这些特征可以作为治疗疼痛的新治疗干预措施的潜在目标。 方法:在 12 名接受临床指征神经阻滞手术的上肢或下肢慢性疼痛患者中,通过脑电图记录神经阻滞手术前和手术后 30 分钟的大脑活动。为了确定缓解慢性疼痛的具体皮质电生理相关因素,12 名接受冷压试验以诱发实验性急性疼痛的健康参与者被用作对照组。对数据进行分析,以表征疼痛缓解的功率谱密度模式,并确定其在皮质层面的源发生器。 结果:慢性疼痛缓解与额叶区域的 delta、theta 和 alpha 功率显著增加有关。然而,只有中额叶 θ 波功率增加与疼痛强度降低幅度呈显著正相关。θ 波功率反弹的来源位于左背外侧前额叶皮层 (DLPFC) 和中线额叶皮层。此外,中线额叶皮层的 θ 波功率增加在慢性疼痛缓解时明显高于急性疼痛缓解。结论:这些发现可能为通过调节中线额叶 θ 波振荡来缓解慢性疼痛提供依据。
抽象背景/目标。多发性硬化症(MS)是一种神经系统的免疫介导的疾病,在神经退行器过程中,肌鞘被破坏。实验性自身免疫性脑脊髓炎(EAE)是MS的动物模型,其中保存髓磷脂和轴突的再髓质可以改善神经元的存活。该研究的目的是通过自身免疫性炎症和间歇性(i)Theta爆发刺激(TBS) - ITB或连续TBS(CTB)来评估神经元组织的激活能力,并基于巢穴中的星形胶质细胞,寡头胶质细胞和neuu-rocys和neuu-rons和Neuy-rocys和neuu-rocys的表达谱。方法。使用两种形式的TBS(ITB和CTB)来延长轴突可以重新送轴突的周期。已经研究了ITB或CTBS原始菌种如何用胶质原纤维酸性蛋白,髓磷脂碱性蛋白(MBP)和neu-ronal核蛋白在大鼠脊髓中影响巢蛋白的表达谱。在骨科水平下的变化。结果。获得的结果表明,两种方案(ITB和CTB)都增加了NESIN和MBP的表达,并降低了EAE大鼠脊髓中的星形胶质细菌。结论。TBS在EAE中的治疗潜力有助于提高从脊髓损伤中恢复的内在能力。关键词:脑脊髓炎,自身免疫性,实验性;多发性硬化症;神经再生; Nestin;老鼠;脊髓;经颅磁刺激。