请按以下方式引用本文:Longo, F., Nicoletti, L., & Padovano, A.(2019)。无处不在的知识为智能工厂赋能:面向服务的数字孪生对企业绩效的影响。年度控制评论,第47,页221-236。DOI:https://doi.org/10.1016/j.arcontrol.2019.01.001。
摘要 电池组既表现出固有的电池间差异,也表现出温度和其他应力因素的时空差异,从而影响电池退化路径的演变。为了解释这些变化和退化或电池扩散的差异,我们提出了一种利用 3 参数非齐次伽马过程对锂离子电池退化进行建模的方法。该方法可预测任何电池架构的容量衰减或故障时间,并使用加速因子调整电池拟合退化数据的分布。在电池组级别,使用并联和串联配置的伽马分布变量组合对电池进行建模。将不同热条件下的容量衰减或故障时间的实际值与预测值进行比较,显示相对误差在 1 – 12% 范围内。我们还提出了一种通过分析样本量对估计不同电池组退化的影响来估计建模扩散和退化路径演变所需的最少电池数量的方法。这种采样策略对于降低设计电池组、电池管理系统和电池热管理系统所需的运行模拟的计算成本特别有用。
摘要 1 1 引言 1 1.1 背景 1 1.2 问题化 2 1.3 研究问题 2 1.4 目的 3 2 理论框架 3 2.1 沟通理论 3 2.1.1 部门内和部门间沟通 4 2.1.2 沟通质量和频率 4 2.2 技术接受模型 (TAM) 5 2.2.1 基于人工智能的沟通与传统方法 5 2.2.2 人工智能沟通工具的可靠性和可信度 6 2.3 组织学习理论 6 2.3.1 适应新的沟通工具 7 2.3.2 绩效改进 8 2.4 社会学习理论 (SLT) 8 2.4.1 社会因素和人工智能的使用 9 2.4.2 团队互动的有效性 10 2.5 创新扩散 (DOI) 理论 10 2.5.1 推动人工智能在通信领域应用的因素 11 2.5.2 人工智能在通信领域的未来愿景 11 3 方法论 12 3.1 研究设计 13 3.2 预研究 13 3.3 数据收集 13 3.3.1 原始数据 13 3.3.2 原始数据抽样 14 3.3.3 受访者和公司 14 3.3.4 访谈指南 15 3.4 数据分析 16 3.5 质量评估 16 3.6 道德考虑 17 3.7 局限性 17 4 实证研究结果 18 4.1 原始数据 18 4.1.1 部门内和部门间沟通 18 4.1.2 沟通质量和频率 19 4.1.3 基于人工智能的沟通与传统方法 20 4.1.4 人工智能通讯工具的可靠性和可信度 20
● 自主性:万一您正在研究的病毒发生变异并逃出实验室,造成新的流行病,这可能会剥夺他人的生命和健康权利。 ● 后果:这可能会带来好或坏的后果。从好的方面来说,功能获得性研究通常是安全的,可以帮助预防未来的流行病并挽救生命。从坏的方面来说,逃逸的病毒可能会非常致命和灾难性的。 ● 公正性:这一决定可能为所有人带来同等的利益和风险。 ● 性格:假设您的主要价值观之一是诚实。您很可能必须对自己在实验室所做的事情保密,以免引起社会恐慌。这意味着这个决定会导致您损害您的一个关键价值观。 ● 普遍性:如果实验室里还有其他人从事功能获得性病毒学研究,您可能会感到安全,因为您知道世界将更好地应对未来的疾病爆发,尤其是因为逃逸病毒的可能性非常小。
Smid 等人(2020 年)进行了一项系统评价,以表征贝叶斯和频率估计在小样本量 SEM 中的表现。在手动筛选 5050 项研究后,仅选定 27 项来回答他们的研究问题。进行系统评价需要付出巨大的筛选努力。这种筛选工作使证据综合成为一项极具挑战性的任务。开源 AI 辅助筛选工具可以潜在地减少工作量:系统评价的主动学习(ASReview;van de Schoot 等人,2020 年)。在 ASReview 中,研究人员与主动学习模型交互筛选摘要。根据研究人员的决策(相关与不相关),该模型会迭代更新其对剩余摘要的相关性预测。通过优先考虑最有可能相关的文章(即基于确定性的主动学习),ASReview 最大限度地减少了研究人员需要筛选的文章数量,同时仍能识别出大多数相关文章。手动筛选和自动优先排序出版物的过程会产生一组相关出版物。作为一个例子,ASReview 被应用于 Smid 等人(2020 年)确定的 5050 篇研究的全部集合。理想的表现被定义为最大限度地识别 Smid 等人最初确定的 27 篇相关文章,同时最大限度地减少研究人员需要筛选的文章数量。相关性预测由主动学习模型进行,该模型使用朴素贝叶斯或逻辑回归作为分类器。对于第一个预测,ASReview 需要一些示例文章。对每个分类器应用了 27 次 ASReview,使用每篇相关文章作为示例文章一次,并与一篇随机的不相关文章配对。如图 1 所示,贝叶斯和逻辑回归模型都发现超过 80%
摘要简介:遗传性载脂蛋白 A-I (AApoAI) 淀粉样变性是一种罕见的异质性疾病,发病年龄和器官受累各不相同。很少有系列文章详细介绍了一系列致病性 APOA1 基因突变的实体器官移植的自然史和结果。方法:我们确定了 1986 年至 2019 年期间在国家淀粉样变性中心 (NAC) 就诊的所有 AApoAI 淀粉样变性患者。结果:总共确定了 57 名患有 14 种不同 APOA1 突变的患者,包括 18 名接受肾移植的患者(5 例肝肾联合 (LKT) 移植和 2 例心肾联合 (HKT) 移植)。发病年龄中位数为 43 岁,从发病到转诊的中位数时间为 3(0 – 31 年)。81%、67% 和 28% 的患者检测到淀粉样蛋白累及肾脏、肝脏和心脏。肾淀粉样变性普遍与最常见的变异 (Gly26Arg, n ¼ 28) 有关。在所有变异中,肾淀粉样变性患者在诊断为 AApoAI 淀粉样变性时肌酐中位数为 159 m mol/L,尿蛋白中位数为 0.3 g/24 h,从诊断到终末期肾病的中位时间为 15.0 (95% CI: 10.0 – 20.0) 年。肾移植后,同种异体移植的中位生存期为 22.0 (13.0 – 31.0) 年。移植后有一例患者早期死亡(肾移植后 2 个月感染相关),未发生导致移植失败的早期排斥反应。在所有四例接受连续 123 I-SAP 闪烁显像的病例中,肝移植均导致淀粉样蛋白消退。结论:AApoAI 淀粉样变性是一种进展缓慢、难以诊断的疾病。移植结果令人鼓舞,移植物存活率极高。
1。Introduction................................................................................................. 1
摘要 — 智慧城市技术已经能够比以前更细致地追踪城市居民。通过人工智能实现的数据收集和分析的增加,带来了隐私、安全和其他伦理问题。本系统综述收集并整理了智慧城市周围的知识体系。作者使用关键词搜索了 5 个数据库中的 34 篇重点学术出版物,这些出版物的日期为 2014 年至 2022 年之间。这项研究表明,文章通常侧重于隐私、安全和公平的伦理问题、特定技术基础评论或框架和指导对话。本文有助于组织跨学科主题,并将智慧城市伦理方面的知识体系收集起来,形成一个供实践者、研究人员和利益相关者使用的单一、全面的资源。
摘要成人 T 细胞白血病/淋巴瘤 (ATL) 存活率低,这凸显了对创新治疗药物的迫切需求。虽然已经记录了 HDACis 在几种血液系统肿瘤中的药代动力学,但关于其对抗 ATL 的活性的研究仍存在明显差距。鉴于缺氧会对淋巴瘤细胞产生不可预测的影响,本研究旨在首次评估 MS-275 和新型类似物在缺氧条件下对 ATL 细胞的毒性作用。进行了蛋白质-蛋白质相互作用和基因集富集分析,评估了 HIF1A 和下游靶标的表达,并对 MS-275 和新型类似物与 HIF-1 a 进行了分子对接。对于体外研究,首先合成 MS-275 的苯甲酰胺类似物,然后评估缺氧条件下 MT-2 细胞的活力。富集分析证实了 HIF-1 信号通路中枢基因的参与,火山图显示 HIF1A、GAL3ST1 和 CD274 过度表达。分子对接表明 MS-275 和 HIF-1 a PAS-B 结构域的类似物之间存在有利的相互作用。alamarBlue 测定结果表明 MS-275 和类似物显著 (p < 0.001) 降低了缺氧条件下 MT-2 细胞的活力。本研究结果有望开发针对缺氧引起的 ATL 变化的新药。