simba浮标档案馆(data.seaiceportal.de)>> 100个部署/存档的浮标2012 - 2023NH&SH(多数北极;马赛克)漂移,温度和加热温度数据直到最近才一致的厚度数据
Boedhoe,PSW,Van Rooij,D.,Hoogman,M.,Twisk,JWR,Schmaal,L.,Abe,Y.,Alonso,P.,Ameis,SH,Anikin,A. S.,Baur-streubel,R.,Behrmann,M.,Bellgrove,MA,Benedetti,F.,Beucke,J.C.,Biederman,J.,Bollettini,I.,Bose,A.,Bralten,J.,Bralten,J.,Bramati,Bramati ,FX,Cercignani,M.,Chaim-Avancini,T.M.,Chantiluke,K.C。,Cheng,Y. D.,Deruelle,C.,Di Martino,A.,Dinstein,I.,Doyle,A.E.,Durston,S.,Earl,E.A. 。
Koenig,J.,Abler,B.,Agartz,I.,Åkerstedt,T。,Andreassen,OA,OA,Anthony,M.,Bär,K.-J.,Bertsch,K.,Brown,R.C.,Brunner,R. MD,Fischer,H.,Flor,H.,Gaebler,M.,Gianaros,P.J.,Giummarra,M.J.,Greening,S.G.,Guendelman,S.,Heathers,J.J. D.,Lamers,F.,Lee,T.-H.,Lekander,M.,Lin,F.,Lotze,M.,Makovac,E. ,B.,Ottaviani,C.,Penninx,Bwjh,Ponzio,A.,Poudel,G.R。,Reinelt,J.,Ren,P.,Sakaki,M。 J.F.,Ubani,B.,Van der Mee,D.J.,Van Velzen,L.S.,Ventura-Bort,C.,Villringer,A.,Watson,D.R.,Wei,L.,Wendt,J.,Westlund Schreiner,M.整个生命周期:横截面合并的大型分析。
1物理系,卡拉布里亚大学,通过P. Bucci,87036 Arcavacata di Rende(CS),意大利2,材料高级光谱实验室,Star Ir,通过Tito Flavio,Calabria,Calabria,Calabria,University of Calabria,87036,87036,87036,Rende(CS),Rende 3 30,nanos Surfacity of Nanos of Surfacity of Nans of Surfacity and coations and coation 30俄罗斯汤姆斯克4力量物理与材料科学研究所,俄罗斯科学学院,634055俄罗斯汤姆斯克,俄罗斯5巴库州立大学,阿塞拜疆阿塞拜疆巴库6同步型S.C.P.P.P.P.P.P.P.P.P.P.P.P.P.P.P.P.P.P.A. Fosso del Cavaliere,00133,意大利罗马8号dePolímerosy y材料高级材料:Física,QuímicayTechnología,ciencias deCienciasquíemas,PaísVascovasco vasco upv / ehu上大学西班牙巴斯克国家塞巴斯蒂安(Sebastián
在从热表面到物体的二维热传导过程中,会遇到热扩散阻力。热扩散和热收缩阻力的相反问题在用于微电子和其他发热设备的热管理的散热器和热扩散器的设计中具有很大的技术相关性。过去在热扩散理论分析方面的大部分工作都是基于具有给定热通量的源。相比之下,等温源问题由于边界条件的混合性质而存在困难,因此只能获得近似解。这项工作推导出从等温源到有限厚度板或圆柱体的稳态热扩散阻力。混合边界条件的处理方式是将其置于空间变化的对流边界条件的形式中,源上的 Biot 数足够大以表示其等温性质。沿着一组足够的线性代数方程推导出该问题的级数解以确定级数系数。结果显示与有限元模拟非常吻合。将结果与先前报告的近似解在近似解的有效参数范围内进行比较。量化了关键无量纲参数对热扩散阻力的影响。结果表明,正如预期的那样,热扩散阻力随着等温热源尺寸的减小而增加。提出了一种具有非常好精度的三阶多项式相关性。这项工作推进了对过去仅报告了近似解的问题的理论理解。这里给出的结果为涉及扩散或收缩的各种实际热管理问题的热设计和优化提供了实用工具。
材料和方法。总共150个12×12毫米的平方标本,分别有6种不同的CAD-CAM单色材料(Vita Enamic Ht [VE],IPS E.Max E.Max CAD HT [LS],LAVA Ultimate HT [Lu],Telio Cad ht [te Te],Vita Suprinity Ht [vs]和celtra ht [vs] and the and 5 n.制造至2.5毫米,增量为0.5毫米)(n = 5)。使用分光光度计(Vita Easyshade V)测量了3种不同的表面处理(抛光,用SIC P800-Grit和P300-Grit进行粗糙),用分光光度计(VITA EASYSHADE V)测量Cielab颜色参数(L*,a*和B*),并用资源仪测量表面粗糙度(VK-X200)。颜色变化通过ΔE00和50:50%的可接受性和可感知的阈值量化。使用MANOVA,2路ANOVA,HOC TUKEY-KRAMER测试和1样本t检验(α= .05)进行数据分析。
计划的能力是称为“执行职能”的认知技能集的重要组成部分。能够事先计划行动在日常生活中至关重要,并且构成了学术和经济成功的主要主要特征之一。本研究旨在通过前额叶皮层的皮质厚度来研究正常发育儿童计划的神经解剖学相关性。18个健康的儿童和青少年进行了结构性MRI检查和伦敦塔(TOL)任务。多重回归分析表明,右尾部额叶回旋(CMFG)的皮质厚度是计划性能的重要预测指标。任何其他前额叶区域的皮质厚度均未与TOL任务的表现显着相关。本探索性研究的结果表明,右侧的皮质厚度(而不是左CMFG)与TOL任务中的性能呈正相关。因此,我们得出的结论是,增加的皮质厚度可能对诸如信息整合的高阶过程更有益,而不是对诸如外部信息分析之类的低阶过程。
of GaN/p-Si based solar cells N. S. Khairuddin a , M. Z. Mohd Yusoff a,* , H. Hussin b a School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia b School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah阿拉姆(Alam),马来西亚雪兰莪(Selangor),在这项研究中,我们使用PC1D模拟器来证明基于硝酸盐(GAN)的太阳能电池模型的性能分析。已经发现,当GAN底物的层厚度生长时,太阳能电池的效率会降低。这是通过比较GAN和硅底物上的掺杂浓度和层厚度来发现的。随着P掺杂SI层的厚度升高,细胞效率恰好增加。GAN和P -Silicon的最佳掺杂浓度分别为1x10 18 cm -3和1x10 17 cm -3。与其他设计相比,GAN/P-Silicon太阳能电池的效率最高25.26%。(2023年6月21日收到; 2023年9月1日接受)关键字:太阳能电池,甘恩,氮化碳,硅,硅,pc1d1。简介硝酸盐(GAN)设备自然会获得市场份额。gan收入将以75%的累积年增长率扩大。电力电子专家目前面临与电路设计技术,被动组件选择,热管理和实验测试有关的问题,这是由于其高开关速度和操作开关频率[2]。gan合金具有可调的直接间隙,这就是光伏使用它们的原因。用于光电和微电子学中的应用,III-V硝酸盐(如氮化岩(GAN),氮化铝(ALN)和硝酸铝(Innride)及其合金及其合金都特别吸引人。他们的带盖是最初[3]最诱人的地方之一。si还旨在在低温血浆增强化学蒸气沉积(PECVD)方法中作为N型掺杂剂掺入,因为它是高温GAN中的众所周知的供体掺杂剂[4]。由于其直接带隙(例如〜3.4 eV),整个可见光谱中的透射率超过82%,高电子迁移率(〜1,000 cm2/vs)[5] [5],高导热率和出色的化学稳定性和出色的化学稳定性[6],氮化物(GAN)具有出色的光学和电气性能。Ingan材料系统的带隙现在跨越了红外线到紫外线。INGAN材料系统对于光伏应用是有利的,因为它可用于制造第三代设备,例如中型太阳能电池,除了高效的多官方太阳能电池外,由于其直接和宽的带隙范围[7]。氮化物具有有利的光伏特性,例如低有效的载体,高迁移率,高峰值和饱和速度,高吸收系数和辐射耐受性,除了宽带间隙范围[8]。IIII-V硝酸盐技术能够生长高质量的晶体结构并创建光电设备的能力证实了其高效光伏的潜力[9]。上述情况使我们能够控制费米水平显然随着gan厚度的上升而向上移动,并减少传导带最小值(CBM)值和价值最大(VBM)值[10]。压缩应力的松弛和较厚的GAN层的载体浓度增加是依赖厚度依赖性带结构的初步解释[11]。
Cortical thickness alterations and systemic inflammation define long-COVID patients with cognitive impairment Bianca Besteher 1,2,3 *, Tonia Rocktäschel 1,2,3 *, Alejandra P. Garza 4 , Marlene Machnik 1 , Johanna Ballez 1 , Dario-Lucas Helbing 1,2,3 , Kathrin Finke 5 , Philipp Reuken 6 , Daniel Güllmar 7 , Christian Gaser 1,2,3,5 , Martin Walter 1,2,3 , Nils Opel 1,2,3 **, Ildiko Rita Dunay 2,3,4 ** 1 Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany 2 German Center for Mental Health (DZPG) 3 Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C),Halle-Jena-Magdeburg 4炎症与神经变化研究所,德国Otto-von-guericke-大学麦格德堡,德国5个神经病学系,德国耶拿大学医院6,德国6日6日内科学院IV级IV,胃肠病学疾病,肝病学院,疾病学院,诊断学院,二流学院和研究院。干预放射学,耶拿大学医院 - 弗里德里希·席勒大学耶拿,德国