考虑到两种材料都需要电桥,焊料和基板之间的电子连接技术变得非常重要。然而,使用含铅的传统焊料已不再被允许,因此正在开发无铅焊接的研究。这项研究旨在研究回流温度对 Sn-58Bi 焊接接头金属间化合物 (IMC) 厚度的影响。选择 Sn-58Bi 焊料和铜板之间的界面反应偶。回流温度设置为高于 Sn-58Bi 焊料熔点温度 61°C、71°C、81°C 和 91°C。高于焊料熔点温度的持续时间设置为 30 分钟。扫描电子显微镜 (SEM) 和能量色散 X 射线光谱 (EDS) 用于研究界面形态和分析局部成分。此外,还进行了 X 射线衍射 (XRD) 测量以确保对 IMC 进行相位识别。需要进行统计分析来比较 Sn-58Bi/Cu 反应对之间 IMC 厚度增长的差异。结果显示在基材-焊料界面处形成了 Cu 6 Sn 5 和 Cu 3 Sn 的 IMC 层。IMC 层厚度随温度而增加。
gan/gainn非对称多量子发光二极管具有不同潜在的屏障厚度(5和15 nm),通过使用金属有机化学蒸气沉积来生长。狭窄的屏障结构改善了设备的性能,包括电致发光积分强度的超线性增加,高电流密度下效率下降的降低,波长漂移的降低,向前电压的降低以及壁插头效率的提高。这是由于量子屏障的厚度变窄,这会导致量子井之间的电场较小,量子限制性鲜明效应的弱化,跨设备活动区域的载体分布更均匀,以及电子泄漏的抑制。
目的:伽马同步是大脑皮层的一个基本功能特性,在多种神经精神疾病(如精神分裂症、阿尔茨海默病、中风等)中会受损。伽马范围内的听觉刺激可以驱动整个皮质层的伽马同步,并评估维持它的机制的效率。由于伽马同步在很大程度上取决于小清蛋白阳性中间神经元和锥体神经元之间的相互作用,我们假设皮质厚度和伽马同步之间存在关联。为了验证这一假设,我们采用了脑磁图 (MEG) - 磁共振成像 (MRI) 联合研究。方法:根据解剖 MRI 扫描估计皮质厚度。与 40 Hz 调幅音调曝光相关的 MEG 测量值被投射到皮质表面。我们考虑了两种皮质同步性测量方法:(a)40 Hz 下的试验间相位一致性,提供伽马同步的顶点估计值;(b)初级听觉皮质与整个皮质套层之间的相位锁定值,提供长距离皮质同步性的测量。然后计算了 72 次 MRI-MEG 扫描的皮质厚度与同步性测量结果之间的相关性。结果:试验间相位一致性和相位锁定值均与皮质厚度呈显著的正相关。对于试验间相位一致性,在颞叶和额叶发现了强关联的簇,尤其是在双侧听觉皮质和运动前皮质中。相位锁定值越高,额叶、颞叶、枕叶和顶叶的皮质厚度就越厚。讨论和结论:在健康受试者中,较厚的皮质对应于初级听觉皮质及其他部位的较高伽马同步和连接性,这可能反映了参与伽马回路的潜在细胞密度。这一结果暗示伽马同步与潜在大脑结构一起参与了高级认知功能的大脑区域。这项研究有助于理解固有的皮质功能和大脑结构特性,这反过来可能构成定义伽马同步异常患者的有用生物标志物的基础。
A.Bellakhdar a,b,* , A.Telia ba LMSF 半导体和功能材料实验室,Amar Telidji Laghouat 大学,阿尔及利亚 b Laboratoire des Microsystèmes et Instrumentation LMI, Département d'Electronique, Faculté de Technologie, Université des Frères Mentouri, 2 Campus Ahmed Hamani, Ain El Bey, Constantine, Algeria In本研究提出了具有不同 GaN 盖层厚度和重 n 掺杂 GaN 盖层的 GaN/AlInN/GaN 高电子迁移率晶体管 (HEMT)。为了研究 GaN 覆盖层对 (GaN/AlInN/GaN) 异质结构性能的影响,通过求解一维 (1 D) 泊松方程,提出了一种简单的 GaN/AlInN/GaN 高电子迁移率晶体管 (HEMT) 阈值电压分析模型,从而找到了二维电子气 (2DEG) 与控制电压之间的关系。分析中考虑了 AlInN/GaN 和 GaN/AlInN 界面处的自发极化和压电极化。我们的模拟表明,GaN 覆盖层降低了二维电子气 (2DEG) 的面密度,从而导致漏极电流减小,并且 n+ 掺杂的 GaN 覆盖层比未掺杂的 GaN 覆盖层具有更高的面密度。 (2021 年 11 月 28 日收到;2022 年 2 月 19 日接受)关键词:GaN 帽、GaN/AlInN/GaN HEMT、2DEG、2DHG、自发极化、压电极化
佛朗哥政权统治时期(1939-1975 年)的西班牙是一个使用各种贸易政策工具来限制贸易的国家的著名历史例子;在这一时期的早期,贸易政策有一个明确的目标,即实现经济自给自足,并使用复杂的非关税和汇率限制制度来实现这一目标。随着西班牙对贸易的看法随着时间的推移而演变,贸易政策自由化,关税(而不是配额)的使用增加,尤其是在 1959 年之后。由于贸易阻碍工具种类繁多,其中包括广泛使用非关税措施,到目前为止,很难回答这个看似简单的问题:西班牙的经济在 20 世纪的很长一段时间内有多封闭。在本文中,我们首次着手回答 1948-1975 年期间的这个问题,并量化西班牙经济孤立主义在这一时期造成的福利成本。
AALBORG大学医院放射学系,霍布罗夫18-22,9000,AALBORG,AALBORG,B丹麦b临床医学系,阿尔堡大学,SØ-SkovveJ 15,9000 ,丹麦,丹麦D机甲,Depteme,Deptement,Denmark,Denmark D Mech-Sense,Deptic Aalborg University Hospital,Mølleparkvej4,9000,Aalborg,丹麦E Steno糖尿病中心北丹麦,AALBORG大学医院,SøvreSkovvej 3e,9000,9000,AALBORG,AALBORG,9000,AALBORG,AALBORG临床Neurophergs of Aalborg E lleparkvej 4,9000,AALBORG,9000,AALBORG,9000 G丹麦AALBORG AALBORG AALBORG AALBORG UNICACY HOSTICY,AALBORG UNICACAL HOSTICAL的眼科系,丹麦AALBORG,AALBORG,AALBORG UNICACAL HOSTICY,MøLleparkvej4,9000,Aalborg,Aalborg,DenmarkAALBORG大学医院放射学系,霍布罗夫18-22,9000,AALBORG,AALBORG,B丹麦b临床医学系,阿尔堡大学,SØ-SkovveJ 15,9000 ,丹麦,丹麦D机甲,Depteme,Deptement,Denmark,Denmark D Mech-Sense,Deptic Aalborg University Hospital,Mølleparkvej4,9000,Aalborg,丹麦E Steno糖尿病中心北丹麦,AALBORG大学医院,SøvreSkovvej 3e,9000,9000,AALBORG,AALBORG,9000,AALBORG,AALBORG临床Neurophergs of Aalborg E lleparkvej 4,9000,AALBORG,9000,AALBORG,9000 G丹麦AALBORG AALBORG AALBORG AALBORG UNICACY HOSTICY,AALBORG UNICACAL HOSTICAL的眼科系,丹麦AALBORG,AALBORG,AALBORG UNICACAL HOSTICY,MøLleparkvej4,9000,Aalborg,Aalborg,Denmark
我们展示了与 InP 衬底几乎晶格匹配的低噪声随机合金 (RA) Al 0.85 Ga 0.15 AsSb(以下简称 AlGaAsSb)雪崩光电二极管 (APD)。与数字合金 (DA) 相比,RA 由于易于生长而易于制造。910 nm 厚的 RA AlGaAsSb 在 450 C 左右的低温下生长,通过抑制吸附原子的表面迁移率来减轻相分离。通过 X 射线衍射、Nomarski 和原子力显微镜图像验证了 RA AlGaAsSb 材料的高质量。电容-电压测量发现背景掺杂浓度为 6-7 10 14 cm 3,表明 RA AlGaAsSb 材料中的杂质密度非常低。电流-电压测量是在室温下黑暗条件和 455 nm 激光照射下进行的。击穿发生在 58 V 时。增益为 10 时,暗电流密度为 70 l A/cm 2 。该值比之前报道的 DA AlAs 0.56 Sb 0.44 APD [Yi 等人,Nat. Photonics 13, 683 (2019)] 低三个数量级,比 DA AlGaAsSb [Lee 等人,Appl. Phys. Lett. 118, 081106 (2021)] 低一个数量级,与 RA AlInAsSb APD [Kodati 等人,Appl. Phys. Lett. 118, 091101 (2021)] 相当。此外,测得的过量噪声显示 k(碰撞电离系数比)较低,为 0.01。这些噪声特性使 RA AlGaAsSb 倍增器适合商业应用,例如光通信和 LiDAR 系统。
我们的研究重点是改善钻石(例如碳(DLC)涂层)的摩擦力特性,该特性由新型PVD技术高功率脉冲磁铁溅射(HIPIMS)沉积,并在工具钢上呈阳性脉冲。这些涂层由于其非凡的特性而引起了行业的极大兴趣:出色的耐磨性,非常低的摩擦系数,出色的硬度或生物相容性。这些研究的目的是改善不同钢底物上DLC涂层的摩擦力特性,例如粘合剂或耐磨性。
本文根据 Creative Commons Attribution 4.0 International License 获得许可,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供 Creative Commons 许可的链接,并指明是否进行了更改。本文中的图像或其他第三方材料包含在文章的 Creative Commons 许可中,除非在材料的致谢中另有说明。如果材料未包含在文章的 Creative Commons 许可中,并且您的预期用途不被法律法规允许或超出允许用途,则您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/
缩写:A F,凋亡水分;空气,酒精不溶性残留物; a n,叶净CO 2同化率; c * ft,叶子面积特异性电容; ETR,电子传输速率; f ias,叶叶叶的一部分细胞间空间; G M,叶叶叶电导至CO 2扩散; G S,气气体传导到气体扩散; l Betchl,叶绿体之间的距离; l chl,叶绿体长度; n pal,帕利塞德层的数量; R光,线粒体非呼吸呼吸速率; RWC TLP,在Turgor损失点处的相对水含量; S c / s,叶绿体表面积暴露于单位(一侧)叶子表面积的细胞间空间; S C / S M,叶绿体表面积暴露于单位叶肉表面积暴露于细胞间空间的细胞间空间; S m / s,叶肉表面积,分为每单位(一侧)叶子表面积的细胞间空间; t chl,叶绿体厚度; T CW,细胞壁厚度; T细胞,细胞质厚度; t le,表皮较低; t叶,叶子厚度; t mes,叶肉厚度; T pal,帕利塞德叶肉厚度; t spo,海绵状的叶肉厚度; T ue,上表皮厚度; Wue,用水效率; ε,弹性的散装模量; πo,全毛的叶子渗透势; ψmd,中午叶水电势; ψPD,黎明前的叶水电势; ψtlp,在库尔戈尔损失点处的叶子潜力。©作者2020。由牛津大学出版社出版,代表实验生物学学会。保留所有权利。有关权限,请发送电子邮件:journals.permissions@oup.com