图 3 森林图显示视网膜层与平均扩散率之间的关联。框代表系数,水平线代表 95% 置信区间(未校正)。视乳头周围 RNFL(蓝色)。GC-IPL(红色)。GCC(绿色)。根据性别、年龄、眼轴长度、脉压、体重指数、吸烟状况和颅内总容量调整的多元线性回归模型。负 β 系数对应于平均扩散率的降低和 WM 微结构完整性的改善,视网膜亚层厚度每增加一个标准差。FDR,错误发现率。*对数转换结果:出于演示原因,系数和置信区间的比例有所变化。区域中的二分视网膜层:小脑中脚、小脑下脚的 ppRNFL;穹窿脊或终纹的 ppRNFL 和 GCC。
摘要:易受攻击的斑块进展和破裂风险的评估和预测对于诊断,管理和治疗心血管疾病以及可能预防急性心血管事件(例如心脏病发作和中风)至关重要。然而,对斑块脆弱性评估的准确评估及其未来变化的预测需要准确的斑块帽厚度,组织成分和结构定量和机械应力/应变计算。多模式性内血管内超声(IVU),光学相干断层扫描(OCT)和血管造影图像数据和随访的血管造影图像数据是从十名患者中获取的,以获得用于模型构建的准确可靠的斑块形态。为228个匹配的IVUS + OCT切片构建了三维薄片薄度有限元模型,以获得斑块应力/应变数据进行分析。定量斑块盖的厚度和应力/应变指数作为替代定量斑块漏洞指数(PVIS),并采用机器学习方法(随机森林)来预测使用实际患者IVUS + OCT随访数据的PVI变化作为金标准。我们的预测结果表明,CAP-PVI(C-PVI),平均CAP应力PVI(emem-PVI)和平均盖CAP菌株PVI(平均值)(平均值)的最佳预测精度为90.3%(AUC = 0.877),85.6%,85.6%(AUC = 0.867)和83.3%(AUC = 0.867)和83.3%(AUC = 0.809)。最佳组合预测因子比最佳单个预测因子的预测准确性提高了6.6%,平均S-PVI为10.0%,平均SN-PVI为8.0%。结合机械和形态学预测因子可能会导致更好的预测准确性。我们的结果证明了使用多模式IVUS + OCT图像的电势准确,有效地预测斑块盖的厚度和应力/应变指数的变化。
图4父母的教育与(a)左中间回(MTG),(b)右中央回(PCG)和(c)右上额回(SFG)通过工作日睡眠持续时间间接地与(a)左中间颞回(MTG),(b)右中心回(PCG)和(c)右中心回(PCG)和(c)儿童的右中心回(SFG)间接相关。父母教育和CT之间的坚实线代表了总效应(C路径),而虚线表示间接效应后的直接效应(cʹ路径)。* p <.05,** p <.01
表明大脑解剖结构可能会影响 NIBS 反应。例如,最近的一项研究表明,左侧 DLPFC 的灰质体积可能与 tDCS 的抗抑郁作用有关。在使用 rTMS 的研究中也发现了类似的结果(Manes 等人,2001 年;Jorge 等人,2008 年)。此外,一项研究调查了健康受试者右前额叶半球皮质厚度与 tDCS 决策表现之间的关联(Filmer 等人,2019 年),目标区域的皮质厚度几乎占受试者认知表现差异的 35%。总之,我们的研究结果进一步证明,NIBS 功效的差异可能是由解剖学个体差异来解释的。
考虑到两种材料都需要电桥,焊料和基板之间的电子连接技术变得非常重要。然而,使用含铅的传统焊料已不再被允许,因此正在开发无铅焊接的研究。这项研究旨在研究回流温度对 Sn-58Bi 焊接接头金属间化合物 (IMC) 厚度的影响。选择 Sn-58Bi 焊料和铜板之间的界面反应偶。回流温度设置为高于 Sn-58Bi 焊料熔点温度 61°C、71°C、81°C 和 91°C。高于焊料熔点温度的持续时间设置为 30 分钟。扫描电子显微镜 (SEM) 和能量色散 X 射线光谱 (EDS) 用于研究界面形态和分析局部成分。此外,还进行了 X 射线衍射 (XRD) 测量以确保对 IMC 进行相位识别。需要进行统计分析来比较 Sn-58Bi/Cu 反应对之间 IMC 厚度增长的差异。结果显示在基材-焊料界面处形成了 Cu 6 Sn 5 和 Cu 3 Sn 的 IMC 层。IMC 层厚度随温度而增加。
gan/gainn非对称多量子发光二极管具有不同潜在的屏障厚度(5和15 nm),通过使用金属有机化学蒸气沉积来生长。狭窄的屏障结构改善了设备的性能,包括电致发光积分强度的超线性增加,高电流密度下效率下降的降低,波长漂移的降低,向前电压的降低以及壁插头效率的提高。这是由于量子屏障的厚度变窄,这会导致量子井之间的电场较小,量子限制性鲜明效应的弱化,跨设备活动区域的载体分布更均匀,以及电子泄漏的抑制。
目的:伽马同步是大脑皮层的一个基本功能特性,在多种神经精神疾病(如精神分裂症、阿尔茨海默病、中风等)中会受损。伽马范围内的听觉刺激可以驱动整个皮质层的伽马同步,并评估维持它的机制的效率。由于伽马同步在很大程度上取决于小清蛋白阳性中间神经元和锥体神经元之间的相互作用,我们假设皮质厚度和伽马同步之间存在关联。为了验证这一假设,我们采用了脑磁图 (MEG) - 磁共振成像 (MRI) 联合研究。方法:根据解剖 MRI 扫描估计皮质厚度。与 40 Hz 调幅音调曝光相关的 MEG 测量值被投射到皮质表面。我们考虑了两种皮质同步性测量方法:(a)40 Hz 下的试验间相位一致性,提供伽马同步的顶点估计值;(b)初级听觉皮质与整个皮质套层之间的相位锁定值,提供长距离皮质同步性的测量。然后计算了 72 次 MRI-MEG 扫描的皮质厚度与同步性测量结果之间的相关性。结果:试验间相位一致性和相位锁定值均与皮质厚度呈显著的正相关。对于试验间相位一致性,在颞叶和额叶发现了强关联的簇,尤其是在双侧听觉皮质和运动前皮质中。相位锁定值越高,额叶、颞叶、枕叶和顶叶的皮质厚度就越厚。讨论和结论:在健康受试者中,较厚的皮质对应于初级听觉皮质及其他部位的较高伽马同步和连接性,这可能反映了参与伽马回路的潜在细胞密度。这一结果暗示伽马同步与潜在大脑结构一起参与了高级认知功能的大脑区域。这项研究有助于理解固有的皮质功能和大脑结构特性,这反过来可能构成定义伽马同步异常患者的有用生物标志物的基础。
A.Bellakhdar a,b,* , A.Telia ba LMSF 半导体和功能材料实验室,Amar Telidji Laghouat 大学,阿尔及利亚 b Laboratoire des Microsystèmes et Instrumentation LMI, Département d'Electronique, Faculté de Technologie, Université des Frères Mentouri, 2 Campus Ahmed Hamani, Ain El Bey, Constantine, Algeria In本研究提出了具有不同 GaN 盖层厚度和重 n 掺杂 GaN 盖层的 GaN/AlInN/GaN 高电子迁移率晶体管 (HEMT)。为了研究 GaN 覆盖层对 (GaN/AlInN/GaN) 异质结构性能的影响,通过求解一维 (1 D) 泊松方程,提出了一种简单的 GaN/AlInN/GaN 高电子迁移率晶体管 (HEMT) 阈值电压分析模型,从而找到了二维电子气 (2DEG) 与控制电压之间的关系。分析中考虑了 AlInN/GaN 和 GaN/AlInN 界面处的自发极化和压电极化。我们的模拟表明,GaN 覆盖层降低了二维电子气 (2DEG) 的面密度,从而导致漏极电流减小,并且 n+ 掺杂的 GaN 覆盖层比未掺杂的 GaN 覆盖层具有更高的面密度。 (2021 年 11 月 28 日收到;2022 年 2 月 19 日接受)关键词:GaN 帽、GaN/AlInN/GaN HEMT、2DEG、2DHG、自发极化、压电极化
AALBORG大学医院放射学系,霍布罗夫18-22,9000,AALBORG,AALBORG,B丹麦b临床医学系,阿尔堡大学,SØ-SkovveJ 15,9000 ,丹麦,丹麦D机甲,Depteme,Deptement,Denmark,Denmark D Mech-Sense,Deptic Aalborg University Hospital,Mølleparkvej4,9000,Aalborg,丹麦E Steno糖尿病中心北丹麦,AALBORG大学医院,SøvreSkovvej 3e,9000,9000,AALBORG,AALBORG,9000,AALBORG,AALBORG临床Neurophergs of Aalborg E lleparkvej 4,9000,AALBORG,9000,AALBORG,9000 G丹麦AALBORG AALBORG AALBORG AALBORG UNICACY HOSTICY,AALBORG UNICACAL HOSTICAL的眼科系,丹麦AALBORG,AALBORG,AALBORG UNICACAL HOSTICY,MøLleparkvej4,9000,Aalborg,Aalborg,DenmarkAALBORG大学医院放射学系,霍布罗夫18-22,9000,AALBORG,AALBORG,B丹麦b临床医学系,阿尔堡大学,SØ-SkovveJ 15,9000 ,丹麦,丹麦D机甲,Depteme,Deptement,Denmark,Denmark D Mech-Sense,Deptic Aalborg University Hospital,Mølleparkvej4,9000,Aalborg,丹麦E Steno糖尿病中心北丹麦,AALBORG大学医院,SøvreSkovvej 3e,9000,9000,AALBORG,AALBORG,9000,AALBORG,AALBORG临床Neurophergs of Aalborg E lleparkvej 4,9000,AALBORG,9000,AALBORG,9000 G丹麦AALBORG AALBORG AALBORG AALBORG UNICACY HOSTICY,AALBORG UNICACAL HOSTICAL的眼科系,丹麦AALBORG,AALBORG,AALBORG UNICACAL HOSTICY,MøLleparkvej4,9000,Aalborg,Aalborg,Denmark
我们的研究重点是改善钻石(例如碳(DLC)涂层)的摩擦力特性,该特性由新型PVD技术高功率脉冲磁铁溅射(HIPIMS)沉积,并在工具钢上呈阳性脉冲。这些涂层由于其非凡的特性而引起了行业的极大兴趣:出色的耐磨性,非常低的摩擦系数,出色的硬度或生物相容性。这些研究的目的是改善不同钢底物上DLC涂层的摩擦力特性,例如粘合剂或耐磨性。