关于是否以及如何使我们的大脑准备“插入”技术设备的辩论必须从今天开始。我们必须讨论哪些是我们愿意承担的风险,以及我们可能不希望进入的未知领域中是否有道路。律师事务所可以在新的方向上发展其客户群,也许某些公司会试图以专门研究与神经技术有关的道德问题而闻名。其他新的机会可能涉及指导神经科学家通过监管过程或就其他法律问题提供建议。如果神经技术要在工作场所或消费者设备的背景下起飞,则可能会有有关相关雇佣法和消费者法问题的建议。很难知道神经技术的吸收最终可能是多么普遍,但是要忽略这是不明智的,特别是考虑到像埃隆·马斯克(Elon Musk),彼得·蒂埃尔(Peter Thiel)和Facebook(Meta)这样的投资者对神经技术项目的支持。
F. Kotz博士,P。Risch,D。Helmer博士,B。E。Rapp Glassomer Georges-georges-köhler-Allee-Allee 103,79110弗里布尔格,德国,德国电子邮件:Frederik.kotz.kotz.kotz.kotz@glassomer.com工程(IMTEK)弗莱堡大学79110德国弗里堡电子邮件:frederik.kotz@imtek.de F. Kotz博士F. Kotz博士,D。Helmer博士,D。Helmer博士,B。E。Rapp Freiburg材料研究中心(FMF)Freiburg 79104 Freiburg,Dermany freiburg,德国弗里伯格大学Hermann-Von-Helmholtz-Platz 6,76344 Eggenstein-Leopoldshafen,德国
Erik van Sebille 1 , Stefano Aliani 2 , Kara Lavender Law 3 , Nikolai Maximenko 4 , José M Alsina 5 , Andrei Bagaev 6 , 7 , Melanie Bergmann 8 , Bertrand Chapron 9 , Irina Chubarenko 6 , Có 和 Có i 1 ,菲利普米 1 , 马蒂亚斯·埃格 11 , 贝勒·福克斯-肯珀 12 , Shungudzemwoyo P Garaba 11 , 14 , Lonneke Goddijn-Murphy 15 , 布里塔·丹尼斯·哈迪斯蒂 16 , 马修·J·霍夫曼 17 , Atsuhiko Isobe 18 , Cleo E Jongedi 19 , 米凯尔·安多尔 19 Liliya Khatmullina 6 , Albert A Koelmans 20 , Tobias Kukulka 21 , Charlotte Laufkötter 22 , Laurent Lebreton 11 , Delphine Lobelle 1 , 23 , 24 , Christophe Maes 9 , 25 , Victor Martinez-Vic 26 , Miles Angda Maguelquel 27 , 玛丽·普兰-扎科斯 28 , 29 , 埃内斯托·罗德里格斯 30 , 彼得·G·瑞恩 31 , 艾伦·L·尚克斯 32 , 元俊沉 33 , 朱塞佩·苏亚利亚 2 , 马丁·蒂尔 34 , 35 , 36 , 托恩·S37 和 大卫·范·布雷默 1
P. 8 Magnetic Resonance Imaging Indicators of Post-Stroke Spasticity Katharine A. Scarlat1,2, Theodore Wein3,4,5, Marie-Hélène Boudrias2,6, Alexander Thiel3,7, Anatol G. Feldman2,8, Mindy F. Levin2,91Integrated Program in Neuroscience, McGill University, Montreal, Canada.2犹太康复医院,加拿大蒙特利尔康复跨学科研究中心。3蒙特利尔麦吉尔大学神经和神经外科的3个部门。 4MCGILL大学健康中心,加拿大蒙特利尔。 加拿大蒙特利尔第5玛丽医院。 6院,加拿大蒙特利尔的物理和职业疗法。 7JEWISH综合医院,加拿大蒙特利尔。 8神经科学蒙特利尔大学,加拿大蒙特利尔大学。 9个学院,加拿大蒙特利尔的物理和职业疗法。 P. 9肉毒杆菌NUM毒素A型A型与干性针刺在触及后下肢痉挛的管理中:概念概念试验的受控Pro Joy Khayat1,2,Clara Pujol-Fuentes3,Pablo-Fuentes3,Pablo Herrero4,Pablo Herrero4,Wim Saeys5,Wim Saeys5,Wim Saeys5,Barte Eeckhaut6,Barte Eeckhaut6,barte eeckhaut6,theodore weiny weiny1,Midey weiny1,Midey weiny1,Midey weiny1,Midey weiny1,Midey sirdy weiny1 ,,3蒙特利尔麦吉尔大学神经和神经外科的3个部门。4MCGILL大学健康中心,加拿大蒙特利尔。 加拿大蒙特利尔第5玛丽医院。 6院,加拿大蒙特利尔的物理和职业疗法。 7JEWISH综合医院,加拿大蒙特利尔。 8神经科学蒙特利尔大学,加拿大蒙特利尔大学。 9个学院,加拿大蒙特利尔的物理和职业疗法。 P. 9肉毒杆菌NUM毒素A型A型与干性针刺在触及后下肢痉挛的管理中:概念概念试验的受控Pro Joy Khayat1,2,Clara Pujol-Fuentes3,Pablo-Fuentes3,Pablo Herrero4,Pablo Herrero4,Wim Saeys5,Wim Saeys5,Wim Saeys5,Barte Eeckhaut6,Barte Eeckhaut6,barte eeckhaut6,theodore weiny weiny1,Midey weiny1,Midey weiny1,Midey weiny1,Midey weiny1,Midey sirdy weiny1 ,,4MCGILL大学健康中心,加拿大蒙特利尔。加拿大蒙特利尔第5玛丽医院。 6院,加拿大蒙特利尔的物理和职业疗法。 7JEWISH综合医院,加拿大蒙特利尔。 8神经科学蒙特利尔大学,加拿大蒙特利尔大学。 9个学院,加拿大蒙特利尔的物理和职业疗法。 P. 9肉毒杆菌NUM毒素A型A型与干性针刺在触及后下肢痉挛的管理中:概念概念试验的受控Pro Joy Khayat1,2,Clara Pujol-Fuentes3,Pablo-Fuentes3,Pablo Herrero4,Pablo Herrero4,Wim Saeys5,Wim Saeys5,Wim Saeys5,Barte Eeckhaut6,Barte Eeckhaut6,barte eeckhaut6,theodore weiny weiny1,Midey weiny1,Midey weiny1,Midey weiny1,Midey weiny1,Midey sirdy weiny1 ,,加拿大蒙特利尔第5玛丽医院。6院,加拿大蒙特利尔的物理和职业疗法。7JEWISH综合医院,加拿大蒙特利尔。 8神经科学蒙特利尔大学,加拿大蒙特利尔大学。 9个学院,加拿大蒙特利尔的物理和职业疗法。 P. 9肉毒杆菌NUM毒素A型A型与干性针刺在触及后下肢痉挛的管理中:概念概念试验的受控Pro Joy Khayat1,2,Clara Pujol-Fuentes3,Pablo-Fuentes3,Pablo Herrero4,Pablo Herrero4,Wim Saeys5,Wim Saeys5,Wim Saeys5,Barte Eeckhaut6,Barte Eeckhaut6,barte eeckhaut6,theodore weiny weiny1,Midey weiny1,Midey weiny1,Midey weiny1,Midey weiny1,Midey sirdy weiny1 ,,7JEWISH综合医院,加拿大蒙特利尔。8神经科学蒙特利尔大学,加拿大蒙特利尔大学。9个学院,加拿大蒙特利尔的物理和职业疗法。 P. 9肉毒杆菌NUM毒素A型A型与干性针刺在触及后下肢痉挛的管理中:概念概念试验的受控Pro Joy Khayat1,2,Clara Pujol-Fuentes3,Pablo-Fuentes3,Pablo Herrero4,Pablo Herrero4,Wim Saeys5,Wim Saeys5,Wim Saeys5,Barte Eeckhaut6,Barte Eeckhaut6,barte eeckhaut6,theodore weiny weiny1,Midey weiny1,Midey weiny1,Midey weiny1,Midey weiny1,Midey sirdy weiny1 ,,9个学院,加拿大蒙特利尔的物理和职业疗法。P. 9肉毒杆菌NUM毒素A型A型与干性针刺在触及后下肢痉挛的管理中:概念概念试验的受控Pro Joy Khayat1,2,Clara Pujol-Fuentes3,Pablo-Fuentes3,Pablo Herrero4,Pablo Herrero4,Wim Saeys5,Wim Saeys5,Wim Saeys5,Barte Eeckhaut6,Barte Eeckhaut6,barte eeckhaut6,theodore weiny weiny1,Midey weiny1,Midey weiny1,Midey weiny1,Midey weiny1,Midey sirdy weiny1 ,,
常见摘要 医学知识领域在不断变化,临床医生必须紧跟实践范围,才能提供最有效的患者护理。批判性地搜索、解释和评估医学文献的能力对于培养将循证答案融入临床实践所需的技能至关重要。重要的是,临床医生需要能够将这些循证概念传达给同行和患者。为了培养这些基础能力,蒂尔学院医师助理理学硕士课程的研究生运用他们的循证医学知识开展数据驱动研究。利用全国青少年至成人健康纵向研究数据集的第四波,学生提出了临床感兴趣的研究问题,并使用统计软件的各种二级数据分析技术回答了这些问题。主题范围广泛,包括心理健康、性传播感染、癌症、预防行为、避孕药的使用等。最终项目将以研究海报的形式展示,其中包括文献综述、方法论、描述性和推断性统计数据以及与医师助理职业的相关性。请与我们一起庆祝我们未来 PA 的辛勤工作!
b'nils R. Winter 1,2,朱利安·布兰克(Julian Blanke)1,拉莫纳(Julian Blanke)1.3,扬·恩斯汀(Jan Ernsting)1.3,4,卢卡斯·菲斯(Lukas Fisch)1,kelvin sarink 1,carlotta barkhau 1,katharina tiel tiel tiel tiel 1,kira thiel tiel 1,kira flinken \ x82学期1 ,Susanne Meinert 1.5,Katharina Dohm 1,Jonathan Repple 6.1,Marius Gruber 1.6,Elisabeth J. Lehr 1,Nils Opel 1,7,8,9,Dominik Grotegerd 1,Ronny Ronny Redlich 1,9,10,Robert Nitsch 2.5,Robert Nitsch 2.5,Robert Nitsch 2.5,Robert Nitsch 2.5,Jochen Bauch 3,乔伊3. 2,12,直到F. M. Andlauer 13,Andreas J. Forstner 14:15,Markus M. N \ XC3 \ XB6THEN 14,MARCELLA RIETSCHEL 16,Stefan G. Hofmann 17:18 17:18,Julia-Katharina Parish 19.20,Leautenberg 19.20,Paeulian Trine usemann 19.20,19.20,19.20, 19.20,Katharina Brosch 19.20,Frederike Stein 19.20,Andreas Jansen 19.20,21,Hamidreza Jamalabadi 19,Nina Alexander 19,Nina Alexander 19,Benjamin Straube 19,Igor Nenadi \ xc2
,比该地区最大可信事件小得多。但是,由于地震中断了旧金山正在进行的世界职业棒球大赛,因此引起了全世界的关注。此外,虽然对州公路系统的整体损坏很小,但一些重要桥梁却遭到严重损坏。这些事实,以及两座桥梁上不幸的人员伤亡,使得加州运输部 (Caltrans) 在地震后成为批评的对象。一些人认为,加州运输部疏忽大意,允许公众使用抗震性能不足的州立桥梁。加州运输部是否应该知道有哪些桥梁无法抵御大地震?加州运输部是否应该更换所有抗震性能不足的桥梁?这些问题促使州长 Deukmejian 成立了一个调查委员会,以确定桥梁损坏的原因。委员会花了几个月的时间举行听证会,以确定加州运输部在地震前制定的抗震政策。 1990 年 5 月 31 日,委员会发布了报告《与时间竞争》(Thiel,1990 年)。他们发现,加州运输部在改进新桥的抗震设计程序方面做得很好。他们认为,桥梁损坏的主要原因是加州运输部的抗震加固计划资金不足。他们建议加州运输部增加抗震加固计划的资金,资助额外的抗震研究,利用更多最先进的解决方案
在旱地农业系统中,开发适当的气候智能技术(CST)选择对于使农业适应气候变化和向可持续性过渡以及提高生产力和收入非常重要。本研究研究了社会经济和机构支持对塞内加尔三个选定地区(Meouane,Thiel和Daga Birame)的变化的影响的社区反应的影响,该地区属于不同的降雨梯度。它捕获了社区对气候变化的看法,将它们与长期气象数据进行比较,并确定特定于现场的响应策略。社区是从目标站点内的社区列表中随机选择的。我们使用了两阶段分层的采样方法来选择样本家庭。首先,进行了目的抽样,以选择至少六(6)个村庄作为每个降雨梯度内的群集。同样,每个簇中的家庭的选择都是基于研究区域种植的农作物的主要价值链,即花生,小米,黑豌豆和牲畜。共有145个家庭参加了这项研究。使用描述性统计和logit模型分析了2022年收获后季节进行调查的数据。分析发现,与历史数据趋势相比,小农对气候指标(包括年降雨,缩短农作物季节和温度上升)有全面的了解。这些因素在农民采用CST的决定中起着至关重要的作用。此外,结果强调了农民如何看待季节性降雨缺陷的负面影响(72%),生长季节的延迟开始(88%),频繁的干咒(68%)和更长的干咒(76%)(76%),最终导致谷物和饲料产量降低。Logit模型还强调了社会经济和机构因素的重要性,例如获得信贷,推广服务,农业经验,与扩展工人的互动频率以及获得政府补贴的重要性。鉴于社区环境的特异性,这些见解对指导决策者具有重要意义,并使小农户中的气候风险更加容易。
本文讨论了与求解麦克斯韦方程的电磁理论和数值方法有关的几篇关键论文。麦克斯韦(Maxwell)于1865年发表的一篇论文提出了电磁场的动力学理论。后来,Chew等。(2020)使用标量和矢量电位公式来简化量子麦克斯韦的方程。本文还引用了几本关于电磁波理论的书籍,包括Kong(1990)和Balanis(2012)的“电磁波理论”和“高级工程电磁学”。讨论了与有限差分时间域(FDTD)方法有关的几篇论文,该方法是由Yee于1966年引入的。FDTD方法是一种用于求解Maxwell方程的数值技术,并且已广泛应用于各个领域。本文还提到了FDTD方法的几种关键算法和应用,包括使用完美匹配的层(PML)吸收电磁波。PML首先是由Berenger于1994年引入的,此后已被广泛用于数值模拟。讨论的其他论文包括与FDTD方法的表面阻抗边界条件相关的论文,以及该方法对天线设计和海洋电磁作用的应用。总的来说,本文提供了与电磁理论和求解麦克斯韦方程的数值方法相关的关键论文和概念的全面概述。研究人员已经开发了使用有限差分时间域(FDTD)算法在复杂介质中模拟电磁波的各种方法。mag。,IEEE Trans。修订版这些方法涉及完美的匹配层(PML),用于在边界处吸收波浪并防止反射。一种方法,称为卷积完美匹配的层(CPML),已被证明是对任意媒体的高效和有效的。此方法使用卷积操作在FDTD算法中实现PML。其他研究人员研究了使用差异形式和指标来开发新方法来模拟复杂介质中的电磁波。这些方法已应用于各种问题,包括磁化铁氧体中电磁波的模拟和人体组织的建模。FDTD算法也已用于模拟电磁波和分散材料(例如等离子体电层)之间的相互作用。在这些模拟中,使用数值方法求解波方程,该方法考虑了材料的分散属性。此外,研究人员还开发了使用卷积PML在光导天线中实施开放边界问题的方法。这些方法涉及使用递归卷积操作在FDTD算法中实现PML。总体而言,在复杂介质中模拟电磁波的新方法和算法的开发是一个活跃的研究领域,在电磁,光学和生物医学等领域中应用。研究人员一直在积极开发和应用有限差分时间域(FDTD)方法来解决复杂的电磁问题。在信誉良好的期刊(例如IEEE Microw)上发表的研究论文。该方法已成功用于分析非线性电路元件,模拟金属纳米甲膜和研究纳米颗粒。为了提高数值稳定性和准确性,研究人员提出了各种技术,例如网状分级和自动网格产生。这些进步使得对复杂几何形状的更有效,更可靠的模拟为材料科学和生物医学工程等领域的新应用铺平了道路。本文讨论了有限差分时间域(FDTD)方法的各种进步,以模拟复杂介质中的电磁波。研究人员推出了新技术,以提高FDTD模拟的准确性和稳定性,例如用于非矩形边界的张量FDTD公式和用于有效计算的亚架算法。子生产是一种通过将仿真域分为较小的子网格来降低计算复杂性的方法,从而使收敛速度更快并提高了精度。本文重点介绍了几种子生产方法,包括局部网格细化,子电池FDTD建模和三维子生产算法。除了亚种植外,研究人员还研究了提高FDTD模拟稳定性的方法。这包括研究可以在薄壁配方中产生的寄生解决方案,并为FDTD亚生成而产生一致且可证明的稳定配方。最近的研究重点是开发和推进有限差分时间域(FDTD)方法,用于模拟复杂的地球层系统中的电磁波传播。天线宣传,J。Comput。本文还提到了有关FDTD方法的其他几项研究,包括将EMP耦合到薄支撑杆和电线的有限差分分析,通过FDTD方法对光纤的快速单模表征以及圆柱形FDTD通过Anisotropic Dippiptipic Dippipic Diptrical FDTD分析通过各种倾向的浸入式浸润的地球媒体。研究探索了FDTD建模的各种应用,包括围绕地球球周围的冲动精灵(极低的频率)传播,Earth-Ionosphere波导的3D全局模型以及提高计算效率的并行化技术。研究人员还研究了提高FDTD模拟中稳定性和准确性的方法,例如质量大块,无条件稳定的隐式有限差异方法以及结合有限元方法(FEM)和FDTD的混合方法。此外,已经提出了各种新颖的算法和方案来增强FDTD方法的稳定性和性能,包括使用交替方向隐式方法和本地一维方案。在FDTD建模和仿真技术中的这些进展有望有助于提高对复杂的地球层系统中电磁波行为的理解和预测,并在电信,导航和地球物理研究等领域具有潜在的应用。有限差分时间域(FDTD)模拟的领域多年来已经显着提高,并开发了各种算法和方法,以提高准确性,分散性能和计算效率。phys。和Phys。XIU的另一本书着重于用于随机计算的数值方法。J.韩国物理学。e探索了对电磁波传播建模的不同方法,包括高阶FDTD方案,晶格模型和物理知识的机器学习。这些研究的重点是提高FDTD算法的准确性和分散性能,以及开发新方法,用于以控制精度和分散的控制顺序制定FDTD方案。研究人员还研究了深度学习技术(例如神经网络和深度丽思方法)的使用来解决部分微分方程和电磁问题。该领域的一些值得注意的论文包括Karniadakis等人,Raissi等,Sirignano等人和Qi等人的论文,这些论文证明了物理学知识的机器学习和深层神经网络的潜力,以解决复杂的电磁问题。此外,Hastings,Schneider和Broschat等研究人员还探索了Monte-Carlo FDTD技术,用于粗糙的表面散射。总体而言,先进的FDTD算法和方法的开发使电磁波传播的更准确,有效的模拟对诸如天线设计,微波工程和材料科学等田地的影响有显着影响。LeMaître和Knio的一本书为“用于不确定性量化的光谱方法:用于计算流体动力学的应用”,使用光谱方法探索了不确定性量化技术。几篇文章讨论了多项式混乱的使用来分析计算流体动力学(CFD)和电磁模拟中的几何不确定性。金属用于改进光学相干断层扫描。Soc。一篇文章介绍了一种基于FDTD的方法,用于建模几何不确定性,而另一篇是在有限差分时间域(FDTD)方法中进行不确定性分析。其他文章涵盖了电磁波传播,辐射和散射等主题;周期性结构;和光子带结构。一些文章讨论了使用非正交FDTD方法计算光子绿色功能和传输/反射系数的使用。文本还提到了其他一些研究论文,这些论文探讨了主题,例如金属光子晶体中的负折射,计算光子带结构,并分析负载的传输线负反射 - 反射 - 索引矩形。C. D.不连续的Galerkin时域模型,具有多速率时间步进的元图几何形状。在2021年IEEE MTT-S国际微波研讨会(IMS)(IEEE,2021).Guo,S。等。81,32–37(2022)。插图广告Google Scholar Eid,A.,Winkelmann,J。 A.,Eshein,A.,Taflove,A。 &Backman,V。光学相干断层扫描中的五帧对比的起源。 生物疾病。 选择。 Express 12,3630–3642(2021)。谷歌学者Cherkezyan,L。等。 散射光的干涉测量光谱可以量化细分屈光 - 折射率波动的统计数据。 物理。 修订版 Lett。 (2013)。章节Google Scholar Li,Y。等。 纳米级染色质成像和分析平台桥梁4D染色质组织具有分子功能。 SCI。 adv。 Spectrochim。 acta pt a:mol。 A.81,32–37(2022)。插图广告Google Scholar Eid,A.,Winkelmann,J。A.,Eshein,A.,Taflove,A。&Backman,V。光学相干断层扫描中的五帧对比的起源。生物疾病。选择。Express 12,3630–3642(2021)。谷歌学者Cherkezyan,L。等。散射光的干涉测量光谱可以量化细分屈光 - 折射率波动的统计数据。物理。修订版Lett。 (2013)。章节Google Scholar Li,Y。等。 纳米级染色质成像和分析平台桥梁4D染色质组织具有分子功能。 SCI。 adv。 Spectrochim。 acta pt a:mol。 A.Lett。(2013)。章节Google Scholar Li,Y。等。纳米级染色质成像和分析平台桥梁4D染色质组织具有分子功能。SCI。 adv。 Spectrochim。 acta pt a:mol。 A.SCI。adv。Spectrochim。acta pt a:mol。A.7,EABE4310(2021)。插图广告Google Scholar Sun,G.,Fu,C.,Dong,M.,Jin,G。&Song,Q. 有限差分时间域(FDTD)指导在Ti底物上制备Ag纳米结构,用于敏感的SERS检测小分子。 生物分子光谱。 269,120743(2022)。元素Google Scholar Seo,J.-H.,Han,Y。 &Chung,J.-Y. 对超高场磁共振成像的鸟笼RF线圈构型的比较研究。 传感器22,1741(2022)。网站广告Google Scholar Taflove,A。 FDTD方法用于模拟不同材料和结构中的光的行为,例如硅在绝缘子光子光子晶体波导和金属纳米线阵列中。 Martin,R。M.(2004)电子结构:基本理论和实用方法。 剑桥大学。 按。 Sholl,D。S.和Steckel,J。 (2009)密度功能理论。 John Wiley&Sons,Ltd。Payne,M。C.,Teter,M。P.,Allan,D.C.,Arias,T。A.和Joannopoulos,J。D.(1992)迭代最小化技术的总计总计算:分子动力学和偶联梯度。 修订版 mod。 物理。 64,1045–1097。 Chew,W。C.,Liu,A。Y.,Salazar Lazaro,C。,&Sha,W。E.(2016)量子电磁学:新外观 - 一部分IEEE J. J. Multisc。 多人。 计算。 技术。 1,73–84。 Chew,W。C.,Liu,A。Y.,Salazar Lazaro,C。和Sha,W。E.(2016)量子电磁学:新外观 - 第二部分。 IEEE J. Multisc。 多人。 计算。 技术。 15。7,EABE4310(2021)。插图广告Google Scholar Sun,G.,Fu,C.,Dong,M.,Jin,G。&Song,Q.有限差分时间域(FDTD)指导在Ti底物上制备Ag纳米结构,用于敏感的SERS检测小分子。生物分子光谱。269,120743(2022)。元素Google Scholar Seo,J.-H.,Han,Y。&Chung,J.-Y.对超高场磁共振成像的鸟笼RF线圈构型的比较研究。传感器22,1741(2022)。网站广告Google Scholar Taflove,A。FDTD方法用于模拟不同材料和结构中的光的行为,例如硅在绝缘子光子光子晶体波导和金属纳米线阵列中。Martin,R。M.(2004)电子结构:基本理论和实用方法。剑桥大学。按。Sholl,D。S.和Steckel,J。(2009)密度功能理论。John Wiley&Sons,Ltd。Payne,M。C.,Teter,M。P.,Allan,D.C.,Arias,T。A.和Joannopoulos,J。D.(1992)迭代最小化技术的总计总计算:分子动力学和偶联梯度。修订版mod。物理。64,1045–1097。Chew,W。C.,Liu,A。Y.,Salazar Lazaro,C。,&Sha,W。E.(2016)量子电磁学:新外观 - 一部分IEEE J. J. Multisc。多人。计算。技术。1,73–84。Chew,W。C.,Liu,A。Y.,Salazar Lazaro,C。和Sha,W。E.(2016)量子电磁学:新外观 - 第二部分。IEEE J. Multisc。多人。计算。技术。15。&Brodwin设计和基于光子晶体的生物传感器的分析,以检测电磁波传播的不同血液成分模拟地面渗透雷达的电磁波传播,使用GPRMAX软件在倾斜和完全型电场沿浸入量的倾斜度范围内的ectriccentric LWD钻孔传感器的数值建模在浸入和完全各向异性的范围内实现的范围范围内的范围内的范围内的范围内的范围内的范围。在各向异性的地球 - 离子层波导中,使用FDTD方法减少了地球 - 离子层波导中FDTD方法的角度分散,用于在地球 - 离子层ldf无线电波中传播VLF-LF无线电波在地球 - iOn层波导中的vlf-iOn层fdtd传播中VLF-lf-lf的传播中VLF-LF的传播中的vlf-ion层传播模型3的vlf-ion层传播。在地球 - 离子层波导中的长距离VLF传播FDTD模型,用于低海拔和高空闪电产生的EM领域通过电离层等离子体的不规则进行高频波通过FDTD方法网格基于电网基于电网的,基于电磁波的时间域模型的电动磁性反射的电动层的动力学反射的电流模型的电流层模型的模型折射率为阴性指数的媒体中的折射文章讨论了使用有限差分时间域(FDTD)方法的使用来分析各种电磁现象,包括负屈光度指数分离和光子纳米夹。1,85–97。Fox,A。M.(2006)量子光学:简介。卷。牛津大学。按。Gerry,C.,Knight,P。和Knight,P。L.(2005)入门量子光学。剑桥大学。按。Miller,D。A.B.本文还提到了几篇应用FDTD方法研究各种主题的特定论文,包括: *负折射率 - 索引超材料(2004 IEEE MTT-S International Microwave研讨会消化) *光子纳米喷气机及其在光线范围内的光线范围及其在nanoparticles(nanoparticles for Nanoparticles(Optigs)的后范围(2004年)的增强, 2022) * Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements (Journal of Optical Society America, 1999) The article also discusses the use of FDTD to analyze other topics, such as: * Photonic band-gap structures (Microwave Optics Technology Letters, 2004) * Surface grating couplers (Laser Photonics Review, 2021) *在隔离器上硅光子晶体波导具有减少损耗(光学量子电子,2007年),该文章得出结论,FDTD方法是模拟和分析各种电磁现象的强大工具,并且已广泛地用于光孔和纳米技术领域。(2008)科学家和工程师的量子力学。剑桥大学出版社。na,D.-Y。和Chew,W。C.(2020)量子电磁有限差分时间域求解器。量子量表2,253–265。na,D.-Y.,Zhu,J。,&Chew,W。C.(2021)对有限大小的分散介质的对角线化:具有数值模式分解的规范量化。物理。修订版A 103,063707。na,D.-Y.,Zhu,J.,Chew,W。C.和Teixeira,F。L.(2020)量子信息保存计算电磁学。物理。修订版A 102,013711。Thiel,W.,Tornquist,K.,Reano,R。和Katehi,L。P. B.(2002)使用时域方法对RF-内蒙切换中的热效应进行了研究。在2002年IEEE MTT-S国际微波研讨会摘要(Cat。编号02CH37278)。alsunaidi,M。A.,Imtiaz,S.M。S.和El-Ghazaly,S.M。(1996)使用全波时间域模型对微波晶体管的电磁波影响。ieee trans。微量。理论技术。44,799–808。Grondin,R。O.,Elghazaly,S。M.,&Goodnick,S。A.(1999)对半导体和全波电磁学中电荷运输的全球建模综述。ieee trans。微量。理论技术。47,817–829。Piket-May,M。等。(2005)具有活性和非线性组件的高速电子电路。计算电动力学:有限差分时间域方法ch。15。sui,W.,Christensen,D。A.和Durney,C。H.(1992)将二维FDTD方法扩展到具有主动和被动的总元件的混合电磁系统。ieee trans。微量。理论技术。40,724–730。Decleer,P。和Vande Ginste,D。(2022)基于用于纳米线建模的ADHIE-FDTD方法的混合EM/QM框架。IEEE J. Multisc。多人。计算。技术。7,236–251。ieee trans。Geosci。 遥感 43,257–268。Geosci。遥感43,257–268。43,257–268。hue,Y.-K。,Teixeira,F。L.,Martin,L。S.和Bittar,M。S.(2005)通过浸入地层对钻孔中偏心LWD工具响应的三维模拟。Zhang,Y.,Simpson,J。J.,Welling,D。和Liemohn,M。(提高了麦克斯韦方程的效率FDTD模型用于太空天气应用)研究人员一直在努力提高用于电磁模拟中的数值方法的稳定性和准确性,尤其是有限端口 - 递观时间域(FDDDDDDDDDDDDDDDDDDDDDDDD)。各种研究已经探索了扩展FDTD稳定性极限的方法,包括使用空间滤波,自回旋模型和模式跟踪。其他研究重点是优化网格几何形状,插值方案和数字过滤,以提高准确性。此外,还有关于应用其他领域的技术(例如量子信息和金属镜)来改善FDTD模拟的研究。一些研究还探讨了麦克斯韦的方程和拓扑观点的使用在理解电磁现象中。此外,研究人员开发了用于敏感性分析,形状优化和自适应网状精炼的新方法。这些努力的目的是开发更准确,有效的数值方法,以模拟复杂的电磁系统,例如在等离子体模拟,电离层不规则和元图设计中发现的系统。在2007年出版物中探索了电磁学的数值方法。该研究结合了有限的差异时间域和矩技术的方法,以模拟与各种地面环境相互作用的复杂天线。单独的研究论文提出了一种混合方法,合并了射线追踪和FDTD方法,以准确模拟室内无线电波传播。另一项研究提供了使用统一框架对计算电磁学的全面概述。此外,在2008年出版物中讨论了光子晶体的概念,重点是控制光流。
