。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年10月21日。 https://doi.org/10.1101/2024.01.18.576308 doi:Biorxiv Preprint
正在进行的研究探索了新的腈基官能化分子,例如疏螺旋体素 5 和具有腈基的二氢喹海松酸衍生物。6 氘在延长药物在体内的半衰期方面起着至关重要的作用,从而改善了暴露情况并减少了有毒代谢物,从而提高了疗效和安全性。7,8 例如 FDA 批准的第一个氘代药物,2017 年的氘代丁苯那嗪,9 和 2022 年的德克拉伐替尼。10 炔烃通常存在于药物分子中,可促进良好的相容性,11 例如依法韦仑、炔诺孕酮、炔雌醇等。随着这些药物的蓬勃发展,全面了解它们的生物和生理机制对于制定个性化的治疗方法至关重要。药代动力学研究旨在监测体内的药物浓度,反映药物在整个暴露过程中身体与药物的相互作用,包括药物的吸附、分布、代谢和消除/
摘要在过去的二十年中,生物正交化学对各种与化学相关的领域进行了深远的影响,包括化学生物学和药物递送。这种变革性的进步源于涉及化学家和生物学家的协作努力,强调了跨学科研究的重要性。在此帐户中,我们在拉德布德大学的分子与材料研究所内的生物正交化学发展。化学因素从狭窄的炔烃和烷烃跨越了药物释放和生物缀合策略,反映了生物正交化学提供的广泛范围。通过反思起源于拉德布德大学的化学反应,该帐户强调团队合作是在推动生物方性化学方面取得重大进展的重要性。1引言2提供BCN作为化学生物学和3的强大生物串管工具,以便于可用的点击释放式转换 - 环状烯4给出分子指南5下一代生物缀合策略:动态点击化学6结论6结论
CAR T细胞疗法表现出对血液学恶性肿瘤的有望,但其功效通常受到有限的增殖,持久性和效应子功能的阻碍。我们证明,正交IL-2信号传导在抗性癌症模型中增强了CAR T细胞的抗肿瘤效力,并且在功效和毒性中都胜过现有的CAR-T装甲策略。正交IL-2驱动非常规效应细胞态,其特征是细胞周期进展和持久性增强以及应力反应减少。 从机械上讲,正交IL-2通过抑制蛋白酶体活性促进MYC的表达,从而促进效应子分化。 这些发现提供了有关IL-2如何调节T细胞命运的新型机械见解,并提供了可行的装甲策略,以将T细胞重编程为有利的效应子状态。正交IL-2驱动非常规效应细胞态,其特征是细胞周期进展和持久性增强以及应力反应减少。从机械上讲,正交IL-2通过抑制蛋白酶体活性促进MYC的表达,从而促进效应子分化。这些发现提供了有关IL-2如何调节T细胞命运的新型机械见解,并提供了可行的装甲策略,以将T细胞重编程为有利的效应子状态。
1。简介MIMO-OTF可以进一步提高频谱效率,而OFDM则提供了易于实现,对多径褪色和窄带干扰的强大弹性以及出色的光谱效率。OTFS调制是一种有前途的方法,用于确保在人们四处走动的情况下确保可靠的通信。无线通信自1960年代以来一直在迅速发展,其中LTE是新产生无线传输框架的主要方法之一。LTE高级(LTE-A)框架使用MIMO和OFDM方法来实现最大数据速率通信。MIMO在当前无线框架中的动机是改善容量受限的系统,质量和包容性改进,滥用长期评估以扩大限制,包含范围以及无线框架的信息传输可靠性[1]。普遍的无线框架之一是无线局域网(WLANS),其互连笔记本电脑,个人数字助手(PDA),手机和其他手持式小工具如图1.LTE是一种无线和移动通信技术,与其他技术相比,它具有新功能和优势[2]。其主要目标包括提高下行链路和上行链路数据速率,灵活的数据传输能力,提高幽灵熟练的能力以及提高客户端的限制。lte/lte-a正在将过境中的沟通进步提高到5G传输方案,如图2所示。_____________________________ *通讯作者:ali.j.r@alkafeel.edu.iq
摘要 — 欧洲 6G 旗舰项目 Hexa- X 提出,第六代 (6G) 无线通信系统预计将集成智能、通信、传感、定位和计算。这种集成的一个重要方面是集成传感和通信 (ISAC),其中传感和通信系统使用相同的波形,以应对频谱稀缺的挑战。最近,提出了正交时频空间 (OTFS) 波形来解决 OFDM 在未来某些无线通信系统中由于高多普勒频移而导致的局限性。在本文中,我们回顾了 ISAC 系统的现有 OTFS 波形,并为未来的研究提供了一些见解。首先,我们介绍 OTFS 的基本原理和系统模型,并对这项创新技术的核心概念和架构提供基础性的理解。随后,我们概述了基于 OTFS 的 ISAC 系统框架。我们全面回顾了 OTFS 辅助 ISAC 系统领域的最新研究发展和最新技术,以全面了解当前的形势和进步。此外,我们对支持 OTFS 的 ISAC 操作和传统 OFDM 进行了彻底的比较,突出了 OTFS 的独特优势,尤其是在高多普勒频移场景中。随后,我们解决了基于 OTFS 的 ISAC 系统面临的主要挑战,确定了潜在的限制和缺点。最后,我们提出了未来的研究方向,旨在激发 6G 无线通信领域的进一步创新。
生物中新功能的发展是人群中连续基因组突变和选择的结果。这个过程很慢,进化速率从根本上受到临界突变率(1)的限制。divienced的进化通常通过体外产生遗传多样性来避开体内突变率的限制(2),但这并不能使生物体内基因的持续演变。细胞的突变率可以瞬时增加,但是高水平的未靶向突变会导致基因组上的灾难性突变负荷,并且是不可持续的。插入病毒基因组中的基因可以通过迭代感染新的诱变细胞来突变(3-6)。这种方法避免了增加细胞基因突变速率的挑战,并且可以扩展以选择某些表型(7)。然而,该策略仅限于不断发展的基因,这些基因足够小,可以包装到病毒中,并选择可以与感染性偶联的表型。此外,在复制应激条件下的细胞中进行选择,这可能会进一步限制可以探索的细胞表型。将突变直接引导到细胞内特定的,有针对性的DNA序列而没有实质上增加基因组突变率的策略提供了驱动靶序列加速,可持续,连续,连续的细胞演化的可能性(8-17)。通过将靶基因重组到酵母中现有的线性质粒系统开创性的工作利用了现有的天然线性质粒,该质粒在酵母菌溶胶中起作用,并由专用的,蛋白质的DNA聚合酶复制,该聚合酶不将酵母基因组复制为天然正交复制系统(12,13)。
植物使用化学诱导的二聚化(CID)模块(包括受体pyr1和HAB1)感知脱落酸(ABA),这是由配体激活的pyr1抑制的磷酸酶。此系统是唯一的,因为可以重新编程配体识别的相对容易。为了扩展Pyr1系统,我们设计了一个正交的“*”模块,该模块携带了二聚体界面盐桥; X射线晶体学,生化和体内分析证实了其正交性。我们使用此模块创建了Pyr1* mandi /hab1*和pyr1* azin /hab1*,它们对其激活的配体曼陀果实和偶氮甲基具有纳摩尔敏感性。在拟南芥和酿酒酵母中进行的实验证明了使用活物生物传感器和构建多输入/输出遗传电路的抗抑郁剂污染物的敏感检测。我们的新模块启用了用于植物和真核合成生物学的可编码的多渠道CID系统,可以增强新的基于植物和微生物的感应方式。
在这里,我们研究解码通过未知量子态传输的信息的问题。我们假设 Alice 将字母表编码为一组正交量子态,然后将其传输给 Bob。然而,介导传输的量子通道将正交状态映射到非正交状态,可能混合。如果没有准确的通道模型,那么 Bob 收到的状态是未知的。为了解码传输的信息,我们建议训练测量设备以在鉴别过程中实现尽可能最小的误差。这是通过用经典通道补充量子通道来实现的,经典通道允许传输训练所需的信息,并采用抗噪声优化算法。我们在最小误差鉴别策略的情况下演示了训练方法,并表明它实现了非常接近最优误差概率。特别是,在两个未知纯态的情况下,我们的建议接近 Helstrom 界限。对于更高维度中的大量状态,类似的结果也成立。我们还表明,减少训练过程中使用的搜索空间可以大大减少所需资源。最后,我们将我们的建议应用于相位翻转通道达到最佳误差概率的准确值的情况。
摘要:无细胞基因表达是研究定义最小环境中生物系统的重要研究工具,并且在生物技术中具有有希望的应用。开发控制无细胞表达的DNA模板的方法对于精确调节复杂的生物学途径并与合成细胞一起使用至关重要,尤其是使用远程,非损害刺激(例如可见光)。在这里,我们已经合成了蓝色的光活化DNA部分,这些DNA部分严格调节无细胞的RNA和蛋白质合成。我们发现,这种蓝色光激活的DNA可以与我们先前产生的紫外线(UV)光激活的DNA正交表达,我们用来生成双波长的无光控制的无细胞和栅极。通过将这些正交的光激活DNA封装到合成细胞中,我们使用了两个重叠的蓝色和紫外线模式,以对逻辑门提供精确的时空控制。我们的蓝色和紫外线正交光激活的DNA将为精确控制生物学和医学中的无细胞系统打开大门。■简介基因表达的精确控制具有广泛的应用,包括生物学研究,生物技术和医学。1缺乏控制工具的基因表达的一个区域是无细胞表达(CFE),它从DNA模板中产生功能RNA/蛋白质。cfe被广泛用于生物学,生物技术和合成生物学2,3作为研究基本生物学过程的研究工具,以最小的细胞样环境。304,5使用CFE系统阐明了几种重要的生物学机制,例如DNA复制,6,7遗传密码,8和mRNA Poly-A Tails的作用,9已被阐明。已经开发了大量不同的CFE系统10-12,现代系统提供高表达产量,多功能性,可伸缩性和可访问性。基于CFE逻辑门的生物传感器已被用来生成病原体13-15和小摩尔菌的便携式检测系统。16-18 CFE还允许对SARS-COV-2进行大规模疫苗接种工作所需的快速和高产量产生mRNA疫苗。19,20在脂质双层中的CFE系统的封装也已用于形成合成细胞,21-24允许对研究生物学过程的自下而上方法,例如细胞通信25-27-27和细胞周期28,29 Interro,并在体外并通过与活细胞相互作用在药物中使用未来的应用。