2019-01 2019.02.22 在推荐的操作模式中添加了 CCM 模式。在旧机制中添加了 PKCS1.5 填充。 2020-01 2020.03.24 建议将 FrodoKEM 和 Classic McEliece 与之前推荐的非对称机制结合使用,并采用适当的安全参数用于 PQC 应用。建议使用 Argon2id 进行基于密码的密钥派生。将密钥长度为 2000 位或更长的 RSA 密钥的一致性过渡延长至 2023 年底。 2021-01 2021.03.08 修订随机生成器章节,特别是关于使用 DRG.3 和 NTG.1 随机生成器。不再建议将 PTG.2 随机生成器用于一般用途。添加基于哈希的签名程序的标准化版本。 2022-01 2022 年 1 月 28 日对全文进行根本性编辑修订,对版面进行细微调整。更新了侧信道分析、QKD 和随机数生成器的种子生成方面的内容。 2023-01 2023 年 1 月 9 日将安全级别提高到 120 位,更新了 PQC 方面的内容。 2024-01 2024 年 2 月 2 日在量子安全密码学背景下进行根本性重组,自 2029 年起停止使用 DSA 建议,纳入 MLS 协议。
您正在打包行李准备乘飞机。您的行李最大重量为 23 公斤。目前您已打包:阅读书籍:1 3/5 公斤靴子:7.00 公斤套头衫:5 公斤睡袋:1495 克急救箱:501 克您还剩下多少重量(以公斤为单位)?注意:将您的答案四舍五入到小数点后 3 位。
太阳能部署继续超出预期,预计 2024 年将安装 593 吉瓦。这比去年高出 29%,而 2023 年则比 2022 年增长 87%。BNEF 预测,到 2030 年,太阳能容量将达到 6,640 吉瓦,超过实现全球三倍增长所需的 6,101 吉瓦。目前,2030 年各国目标的总和仅为 3,011 吉瓦,远低于市场预测的可能水平。在所分析的 55 个国家中,有 31 个国家的近期和预测太阳能新增量表明,到 2030 年,预计太阳能容量足以实现目标。因此,可以上调目标以反映太阳能市场的快速增长。
肌肉骨骼疾病骨关节炎(OA)是全球老年人慢性疼痛和残疾的主要原因。oa可以在所有滑膜中找到,但在膝盖和臀部等重量关节中更为明显。膝关节中的病理变化不限于关节软骨,因为OA会影响整个关节,因此滑膜倾斜,骨肥大的形成,软骨下骨硬化和退化的韧带是OA的进一步标志(1,2)。OA的病因被认为是与全身和局部因素相互作用的多因素(例如,衰老,女性性别,遗传倾向和超重)(3)。局部危险因素还包括前创伤性损伤,例如半月板或韧带,关节内骨折和软骨病变(4)。数十年来,已经研究了原发性OA和创伤后OA(PTOA)的病原机制,但是,当前可用的治疗方法都无法可靠地防止OA进展(5,6)。先前的研究表明,补体系统和细胞衰老都参与OA发病机理和特异性靶向可能是OA治疗的未来方法。补体系统是先天免疫系统的重要组成部分,以前的研究表明,在OA和PTOA进展过程中,它至关重要(7-11)。与健康个体相比,在来自OA患者和急性膝盖损伤后的滑动流体中发现了包括C3A,C5B-9,C4D和C3BBBP在内的补体激活产物水平升高(12,13)。除了软骨细胞和滑膜细胞的局部表达外(10)外,由于膝关节损伤引起的出血(11),也可能受到关节内补体成分的水平。在OA进展过程中的补体激活被认为可以通过各种微环境变化(例如,增强的蛋白酶活性和ROS的积累)以及与损伤相关的分子模式(DAMP)促进。 后者包括在坏死细胞死亡和软骨降解期间释放的细胞和基质衍生的成分(例如,II型胶原蛋白的分解产物)(2,10,14,15)。 补体系统的激活以级联的方式发生,导致过敏毒素C3a和C5a的产生以及末端补体复合物的形成(TCC;也称为C5B-9)。在OA进展过程中的补体激活被认为可以通过各种微环境变化(例如,增强的蛋白酶活性和ROS的积累)以及与损伤相关的分子模式(DAMP)促进。后者包括在坏死细胞死亡和软骨降解期间释放的细胞和基质衍生的成分(例如,II型胶原蛋白的分解产物)(2,10,14,15)。补体系统的激活以级联的方式发生,导致过敏毒素C3a和C5a的产生以及末端补体复合物的形成(TCC;也称为C5B-9)。
FDA 和医疗器械行业认识到全球统一的方法来监管支持 AI/ML 的设备的价值。2021 年,FDA、加拿大卫生部和英国药品和保健产品管理局 (MHRA) 联合发布了一份文件,其中确定了 10 项指导原则,这些原则可以为良好机器学习规范 (GMLP) 的制定提供参考。GMLP 支持开发安全、有效和高质量的人工智能/机器学习技术,这些技术可以从实际使用中学习并可能提高设备性能。
模具行业不断要求先进的技术来提高模具在其生命周期内的性能。直接金属沉积 (DMD) 为模具翻新提供了关键机会。然而,通过 DMD 的典型刀具路径由交替的平滑段和尖角组成。在这里,能量密度和粉末数量的波动通常会导致工具恢复部分出现严重的几何偏差。这项工作提出了一种基于机器学习的新型预测方法,该方法使用与工艺参数和执行的几何形状相关的特征来表征路径。该方法的优势已在刀具路径上得到验证,刀具路径通常表征工具翻新过程。© 2022 作者。由 Elsevier Ltd 代表 CIRP 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)
铁是一种丰富的化学元素,自古以来就以钢和铸铁的形式用于制造工具、器皿和武器。[1,2] 钢铁目前每年的产量为 1.4 亿吨,是人类文明中最广泛利用的材料之一。[1] 如此高的产量和当前加工技术的高碳足迹,使钢铁成为现代社会减少材料对环境影响的首选材料。[3] 虽然全世界的大部分钢铁生产都用于制造致密的建筑结构元件,但人们也在探索将多孔铁块用于催化、[4] 储能、[5] 组织再生 [6] 和结构应用。[7] 对环境影响较小的轻质结构的需求日益增长,人们对此类多孔金属以及它们对旨在更有效地利用自然资源的非物质化战略的潜在贡献的兴趣日益浓厚。海绵铁是通过将矿石在熔点以下直接还原而获得的,是多孔金属最早的例子之一。[8] 由于其强度相对较低,这种多孔铁在过去被用作制造致密结构的前体。多孔金属的低强度源于众所周知的材料强度和相对密度之间的权衡。[9] 根据 Gibson-Ashby 分析模型的预测,[10] 多孔和胞状结构的强度和刚度与固相相对密度 (φ) 呈幂律关系:P∼φm,其中 P 是关注的属性,m 是缩放指数。重要的是,高度多孔的大型结构(φ<0.20)通常表现出的刚度和承载能力远低于这种简单分析模型的预期水平。 [11] 事实上,实验和计算研究表明,当材料的相对密度接近其渗透阈值时,只有一小部分固相能有效地增加多孔结构的刚度。[12,13] 这是因为在多孔网络结构整体变形过程中存在未受载荷的悬挂元素。[14]
精英经济学博士计划旨在培训研究生一生的研究。本文询问建议如何影响研究生的PHD后研究生产力。建议是高度集中的:在我们研究的八所高度选择性学校中,少数顾问做大多数建议工作。我们量化顾问属性,例如顾问自己的研究成果以及咨询关系的各个方面,例如合作和研究领域的亲和力,这可能有助于学生研究成功。受研究活性,多产的顾问建议的学生倾向于发表更多,而合交没有效果。学生顾问研究的亲和力也可以预测学生的成功。但是,学校级的总生产功能提供了因果影响的弱证据,这表明成功的顾问吸引了可能成功的学生 - 不一定会增加学生的成功机会。因果影响的证据对于顾问自己的研究成果的量度最强。汇总的学生研究成果似乎随研究生入学率线性扩展,没有班级大小的效果的证据。对研究产出中性别差异的分析表明,在PHD后的头几年,男性和女性研究生的生产力同样具有生产力,但女性生产率的峰值比男性生产力早。
所有战场 7,192 - - 巴勒斯坦 (GSM) 1945 年 9 月 3 日至 1948 年 6 月 30 日 754 - - 马来亚 (GSM) 1948 年 6 月 16 日至 1960 年 7 月 31 日 1,442 - - 柏林空运 (GSM) 1948 年 6 月 25 日至 1949 年 10 月 6 日 25 - - 长江 (NGSM) 1949 年 4 月 20 日至 1949 年 7 月 31 日 45 - - 朝鲜 1 (UN) 1950 年 6 月 27 日至 1954 年 7 月 27 日 1,129 - - 运河区 (GSM) 1951 年 10 月 16 日至 1954 年 10 月 19 日 405 - - 肯尼亚 (AGSM) 1952 年 10 月 21 日至 1956 年 11 月 17 日 95 - - 塞浦路斯 (GSM) 1955 年 4 月 1 日至1959 年 4 月 18 日 358 - - 近东(苏伊士) (GSM) 1956 年 10 月 31 日至 1956 年 12 月 22 日 24 - - 阿拉伯半岛 (GSM) 1957 年 1 月 1 日至 1960 年 6 月 30 日 60 - - 刚果 (ONUC) 1960 年 7 月 10 日至 1964 年 6 月 30 日 2 - - 文莱 (GSM) 1962 年 12 月 8 日至 1962 年 12 月 23 日 7 - - 婆罗洲 (GSM) 1962 年 12 月 24 日至 1966 年 8 月 11 日 140 - - 塞浦路斯 (GSM) 1963 年 12 月 21 日至 1964 年 3 月 26 日 9 - - 塞浦路斯 2 (联塞部队) 1964 年 3 月 27 日至今 4 - - - 南阿拉伯 (GSM) 1964 年 8 月 1 日至 1967 年 11 月 30 日 160 - - 马来半岛 (GSM) 1964 年 8 月 17 日至 1966 年 8 月 11 日 39 - - 北爱尔兰 3,4 (GSM) 1969 年 8 月 14 日至 2007 年 7 月 31 日 1,441 722 719 其中北爱尔兰以外 53 53 - 佐法尔岛 (GSM) 1969 年 10 月 1 日至 1976 年 9 月 3 日 25 - - 罗得西亚 1979 年 12 月 1 日至 1980 年 3 月 20 日 5 - - 南大西洋(福克兰群岛) 1982 年 4 月 2 日至 1982 年 10 月 21 日 237 - - 海湾 1 (GSM) 1990 年 8 月 2 日至 1991 年 3 月 7 日 45 24 21 1991 年至 2003 年 4 月 30 日 7 0 7 柬埔寨 (UNAMIC/UNTAC) 1991 年 10 月 1 日至 1993 年 9 月 30 日 1 0 1 巴尔干半岛 5,6 (北约) (联合国) 1992 年 7 月 1 日至今 72 13 59 塞拉利昂 (OSM) 2000 年 5 月 5 日至 2002 年 7 月 31 日 5 1 4 阿富汗 5,7 (OSM) 2001 年 9 月 11 日至 2021 年 8 月 28 日 457 405 52 伊拉克 (Op TELIC) 2003 年 1 月 20 日至 2011 年 5 月 22 日 178 135 43 利比亚 (北约) 2011 年 3 月 19 日至 2011 年 10 月 31 日 1 0 1 伊拉克和叙利亚 5 (Op Shader) (OSM) 2014 年至今 6 1 5 马拉维 (Op CORDED) 2019 年 2 月 26 日至今 1 0 1