我们使用van der waals(vdw) - 纠正的密度函数理论和非平衡绿色的功能方法研究了DNA核苷酸酶[腺嘌呤(A),鸟嘌呤(g),胸腺嘧啶(T)和胞嘧啶(C)]与单层Ti 3 C 2 MXEN的相互作用。所有计算均针对石墨烯进行了基准测试。我们表明,取决于Ti 3 C 2表面上方的核碱基的初始垂直高度,可能是两个相互作用机制,即物理吸附和化学吸附。对于石墨烯,与石墨烯片上方核碱基的初始垂直高度无关,DNA核碱始终将物理呈现在石墨烯表面上。石墨烯的PBE + VDW结合能高(0.55-0.74 eV),并遵循G> a> t> C的顺序,吸附高度在3.16–3.22Å的范围内,表明强大的物理学。对于Ti 3 C 2,PBE + VDW结合能相对较弱(0.16-0.20 eV),并遵循A> g = T> C的阶,吸附高度在5.51–5.60Å的范围内,表明弱物理吸收。化学物质的结合能遵循g> a> t> c的顺序,这是相同的物理学顺序。结合能值(5.3-7.5 eV)表示非常强的化学吸附(约为物理吸附结合能的40倍)。此外,我们的频带结构和电子传输分析表明,对于物理吸附,频带结构没有显着变化,也没有调制状态的传输函数和设备密度。相对较弱的物理吸附和强烈的化学吸附表明,Ti 3 C 2可能无法使用物理吸附方法鉴定DNA核碱基。
最近发现二维(2D)过渡金属碳化物和硝酸盐(MXENES)由于其独特的电气,光学和化学性质而受到了极大的关注。这些非凡的特性使它们成为各种应用,包括通过光热效应的多模式肿瘤疗法的合适候选者。在这项工作中,我们演示了如何通过应用连续的超声处理过程来减少1-5 µm大的Ti 3 C 2单层MXENE片。不同的微观技术已被用来可视化超大单层Ti 3 C 2纳米片的形成。所制备的Mxene纳米片在水和乙醇中表现出良好的溶解度。此外,使用(3-氨基丙基)三乙氧基硅烷(Aptes)和聚(3,4-乙二烯二苯乙烯)聚苯乙烯磺酸盐(PEDOT:PSS)用于MXENE纳米片的表面修饰,以打开随后的抗体生物套件的可能性。PEDOT:PSS改善了纳米片的光热转化性能,这是通过在辐射时从48.6ºC增加到58.1ºC的记录,提高了808 nm波长激光器的温度。进一步的体内和体外研究将需要优化Ti 3 C 2纳米片的光热特性。
作者的完整列表:Sharma,Vidushi;新泽西理工学院纽瓦克工程学院,达塔,迪巴卡;新泽西理工学院(NJIT),机械和工业工程系
摘要:过渡型三金属硫化物NiCoMn-S因在混合超级电容器中的高比容量而备受关注,而Ti3C2则因具有标志性的二维层状结构和优异的导电性而被视为一种潜在的新型电极材料。本文通过简单的一步水热法将NiCoMn-S纳米颗粒与二维层状Ti3C2复合,首次将其应用于混合超级电容器(HSC)的正极。大量的NiCoMn-S纳米颗粒分布在Ti3C2表面,为氧化还原反应提供了丰富的电化学活性位点。此外,Ti3C2的二维层状结构为离子传输提供了额外的电子通道,并降低了储能过程中的电荷转移阻力。 NiCoMn-S/Ti3C2-3.4%在1 A g-1密度下实现了347.1 C g-1的比容量,比纯NiCoMn-S(1 A g-1时270.2 C g-1)高28%。最后以NiCoMn-S/Ti3C2-3.4%为正极,RGO为负极组装成混合超级电容器(HSC),在1 A g-1密度下实现了164.3 C g-1的比容量,在15 kW kg-1的比功率下实现了16.2 Wh kg-1的高比能量。
Ti3C2 和 Ti3C2X2 (X= F, OH) 单层的性能和锂存储能力。美国化学会志 134 , 16909-16916 (2012)。36 . Toyoura, K., Koyama, Y., Kuwabara, A., Oba, F. 和 Tanaka, I. 锂原子化学扩散的第一性原理方法
本期刊文章的自存档后印本版本可在林雪平大学机构知识库 (DiVA) 上找到:http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-174378 注意:引用本作品时,请引用原始出版物。Zheng, W., Halim, J., Etman, A., El Ghazaly, A., Rosén, J., Barsoum, M., (2021), Boosting the volumetric capacities of MoO3-x free-standing films with Ti3C2 MXene, Electrochimica Acta , 370, 137665. https://doi.org/10.1016/j.electacta.2020.137665
