摘要:钛合金具有重量轻、强度高、耐热腐蚀等优点,但其优异的力学性能与其组织结构密切相关,在焊接、表面强化、修复等加工过程中需要采用创新的加工方式来保证晶体组织的细化,以满足强度提高、力学性能提高和整体强度提高的要求。通过对Ti-6Al-4V合金表面进行激光直接熔化,比较了连续激光与调制激光模式下熔池的差异。在相同功率下,激光熔池热影响区可缩小为连续激光的1/3。连续激光在高能量密度的作用下可以获得深熔池。不同的熔体穿透深度会导致拉伸性能变化很大。在高频(20 kHz)调制激光作用下可以获得高密度、细晶粒的熔池。包含重熔区的不同熔深深度之间的拉伸试样的力学性能与基体接近,研究结论可为激光重熔加工技术的开发提供技术支持。
[3] M.E.Moussa, C.I.Esposito, M.E.Elpers, T.M.Wright, D.E.Padgett,髋关节脱位增加全髋关节置换术中氧化锆股骨头的粗糙度:59 次检索分析,J. Arthroplasty。30 (2015) 713–717。https://doi.org/10.1016/j.arth.2014.10.036。
单点钻石加工(SPDM)产生其他生产方法无法匹配的光滑加工表面。虽然对用SPDM进行铸造合金的机制进行了充分探索,但添加性制造零件的SPDM领域仍在很大程度上都没有。这项工作揭示了对添加性钛合金的表面产生过程的新见解,特别是Ti6al4v额外的低间隙(ELI)合金工件。我们对芯片形态的检查揭示了一种独特的芯片去除方式,该模式以前未记录在现有文献中。在添加性的TI6AL4V ELI工件的SPDM中,鉴定出在工具耙面上流动的芯片中的许多毛孔和不连续性,表明在材料的塑料流中看到了周期性间歇性裂纹。为了检查这种现象,开发了有限元分析(FEA)模型。尽管FEA模型可以很好地解释文献中报道的Cast Ti6al4v Eli的SPDM的加工力学和芯片形态,但它未能描述在这项工作中加化性工件加工过程中获得的芯片形态。这种差异强调了针对加上制造组件量身定制的创新模拟方法的需求。这项研究中的实验性OB用途强调了芯片形成的独特形式,与常规的TI6AL4V合金加工过程相反。在较低的饲料中,存在短而不连续的芯片形成,外围的撕裂。相反,在较高的饲料下,观察到了长,连续的带状芯片形成。此外,一些典型的添加剂制造缺陷出现在加工表面和芯片上。通过优化SPDT参数,在Addi ti6al4v Eli工件上实现了大约11.8 nm的表面粗糙度(RA)值。这项工作提供了有关SPDM的化合物制造组件的机制的全新视角,为后续研究提供了垫脚石。
图 3:(a) Ti64+C、(b) Ti64+C 和 Ti64 界面以及 (c) Ti64 的微观结构。(d) Ti64+C+LP 的 HAZ 微观结构、(e) HAZ 和 Ti64+C 界面以及 (f)
20. Santana, A.、Eres-Castellanos, A.、Jimenez, JA 等人。“层厚度和激光发射模式对增材制造马氏体时效钢微观结构的影响”,《材料研究与技术杂志》,第 25 卷,第 6898-6912 页 (2023 年)。DOI:10.1016/j.jmrt.2023.07.114。
摘要:假体联合感染是一个罕见的实体,但是从经济方面到卫生系统和患者的情感方面,它都认为高昂的成本。对经常参与联合假体涉及的不同材料的细菌依从性的评估使我们能够更好地了解此基础的机制,并为预防策略的未来发展提供信息。这项研究评估了四种不同物种(金黄色葡萄球菌,葡萄球菌表皮,大肠杆菌和铜绿假单胞菌)上的细菌依从性。在两种合金的样品中测量了地形,表面接触角和线性平均粗糙度。与两种合金表面的相互作用截然不同,COCRMO对所有物种都有汇总作用,在铜绿假单胞菌的情况下,具有额外的抗粘附活性。生存能力也会变化,cocrmo合金的显着降低(p <0.05)。在表皮链球菌的情况下,来自样品的上清液中的生存能力也不同,Ti6Al4V中的集型形成单元的降低,这可能与从表面释放的阳离子释放有关。超越粘附是一个多因素且复杂的过程,考虑到地形和润湿性相似,化学成分可能在观察到的不同特性中起主要作用。
摘要 钛合金Ti6Al4V具有强度高、耐腐蚀性能好等优点,被广泛应用于医疗、汽车、航空航天等行业。另一方面,增材制造(AM)技术可以给予产品设计的自由度。为了推广AMed产品,需要将AMed与锻造产品连接起来,了解接头特性非常重要。本研究在氩气保护下用光纤激光器对Ti6Al4V板进行对接焊,并实验研究了激光焊接锻造/锻造、AMed/AMed、AMed/锻造Ti6Al4V板的接头特性。AMed板的抗拉强度高于锻造板,但AMed板的伸长率较小,这是因为AM工艺中AMed板在激光辐照过程中由于快速冷却而产生α'马氏体。然后,AMed/AMed板的激光焊接接头具有较高的抗拉强度,但伸长率小于锻造/锻造板。强化/锻造钢板的焊接接头表现出良好的焊接状态,因为较小的热输入导致锻造钢板和强化钢板之间形成较小且硬度较高的焊道。
2 SLM 10 2.1参考书目报告制造的钛合金Ti6Al4v的各向异性的机械表征。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.1.1简介。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.1.2添加剂制造过程的介绍。。。12 2.1.3钛合金TI6AL4V的微结构和纹理由增材制造制造。。。。。。。。。。15 2.1.4 SLM生产的钛al-Loy Ti6al4v的机械性能的各向异性。。。。。。。。。。。。。18 2.1.5结论。。。。。。。。。。。。。。。。。。。。。。。。。。。22 2.2实验研究。。。。。。。。。。。。。。。。。。。。。。。。。。23 2.2.1简介。。。。。。。。。。。。。。。。。。。。。。。。。。23 2.2.2样品的描述。。。。。。。。。。。。。。。。。。24 24 2.2.3单轴拉伸测试。。。。。。。。。。。。。。。。。。。。。27 27 2.2.4剪切测试。。。。。。。。。。。。。。。。。。。。。。。。。。。32 2.3结果和讨论。。。。。。。。。。。。。。。。。。。。。。。。37 2.3.1单轴拉伸测试。。。。。。。。。。。。。。。。。。。。。37 2.3.2剪切测试。。。。。。。。。。。。。。。。。。。。。。。。。。。40 2.4结论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。45
钛合金,例如Ti6Al4v,由于其有利的性质,在生物医学行业被广泛用于11种植入物应用。然而,这些合金在存在体液的情况下可以经历12种长期腐蚀,这是植入物13的关键问题,因为它会影响其时间pan。因此,本研究旨在检查体液中14 Ti6al4v的腐蚀性。高度期望的电气排放加工(EDM)技术15用于TI6AL4V样品制备的三种不同条件(油,去离子水,16和羟基磷灰石)混合在去离子水中)。通过微观结构分析,使用电化学17分析评估腐蚀。 结果表明,使用18种水和油产生的样品分别具有最佳和最低的腐蚀性。 在水中在EDM中形成的保护性氧化物第19层,而在油中产生了EDM的异质表面。 20,电容的增加导致氧化物层的增厚,从而增强了21种腐蚀性。 22腐蚀。结果表明,使用18种水和油产生的样品分别具有最佳和最低的腐蚀性。在水中在EDM中形成的保护性氧化物第19层,而在油中产生了EDM的异质表面。20,电容的增加导致氧化物层的增厚,从而增强了21种腐蚀性。22
Wire-Arc添加剂制造(WAAM)是一种定向 - 能源沉积技术,它使用电弧焊接程序生产计算机辅助设计的零件,例如三维印刷金属组件。添加剂制造的挑战是各向异性。间质元素在不同等级的TI6AL4V的机械性能中起重要作用。在这项研究中,比较了该应用的5级和23级Ti6al4v的机械性能。在不同方向(水平和垂直)和不同位置(顶部和底部)的WAAM生产的TI6AL4V壁上提取样品。样品进行光学显微镜和拉伸和硬度测试。5级TI6AL4V样品的强度更大,硬度更大,延展性较低,这是由于间质元素含量较高的23级。底部样品的强度高于顶部样品,这归因于制造过程中的热循环,从而产生不同的微观结构。
