您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
方法:回顾性纳入了 62 名接受 FDOPA PET 和 MRI 检查的未接受治疗的胶质瘤患者。对比增强 T1 加权图像、T2 加权图像、液体衰减反转恢复图像、表观扩散系数图和相对脑血容量图以及 FDOPA PET 图像用于体素特征提取。使用无监督两级聚类方法,包括自组织映射和 K 均值算法,并将每个类标签应用于原始图像。将肿瘤区域内每个类的标签对数比应用于支持向量机以区分 IDH 突变状态。计算受试者工作特征曲线的曲线下面积 (AUC)、准确度和 F1-socore,并将其用作性能指标。
用于断路器控制,保护和逆变器供应。电源通常将是带电池备用的整流器。250V DC电池将包括在Boost时在1.85 VPC(完全放电)至2.35 VPC范围内运行的114/115个电池(210.9 V DC至267.9 V DC)。在均衡电荷下,可能有高达2.4 VPC(≈300VDC)的较高电压值。接地故障检测电路位于直流达板的每个部分(A&B)中,并连接到负和正末端。当前使用的继电器类型是与平衡线圈相对的20k欧姆正阳性和负面的损伤,以允许在直流系统的正或阴性上检测地球故障。这有效地将高阻力地球应用于系统的中心点。即使从电池中切出某些单元格,它在系统中心点仍保持平衡。
许多科学家 [Lynch,1960;Piaget 和 Inhelder,1967;Siegel 和 White,1975] 已经观察到认知地图被组织成连续的层,并提出对大规模环境的有用且有力的描述的核心要素是拓扑描述。分层模型包括从局部感官信息中识别和辨认地标和地点;路线控制知识(从一个地方到另一个地方的过程);连通性、顺序和包含的拓扑模型;以及形状、距离、方向、方位以及局部和全局坐标系的度量描述。看来,认知地图的分层结构是人类在大规模空间中稳健表现的原因。我们的方法试图将这些方法应用于机器人探索和地图学习问题。我们定性方法中对环境的核心描述是拓扑模型,如 TOUR 模型 [Kuipers,1978]。该模型由一组节点和弧组成,其中节点代表环境中可识别的位置,弧代表连接它们的行进路径。节点和弧是根据机器人的感觉运动控制能力程序性定义的。度量信息添加到拓扑模型之上。
从http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.cd22-22-22-0952/3404475/cd-22-22-22-0952.pdf by bern University by Bern Universiti
自 2019 年冠状病毒病 (COVID-19) 出现以来,全球公共卫生基础设施和系统以及社区范围内的合作和服务都面临着前所未有的挑战。疫苗开发立即成为我们所有科学、公共卫生和社区工作的中心。尽管 SARS-CoV-2 疫苗的开发可以说是过去 12 个月中最伟大、最明显的成就,但它们也是疫情期间最具争议和争论的问题之一。然而,疫苗开发的独特之处在于它与其试图服务的社区有着密切的关系;无论是作为一种有效和安全的预防措施进行的临床试验测试,还是作为一种有效的公共卫生工具在开发后“推广”的成功。这些关系产生了无数的复杂性,从基于社区的不信任到学术上争论的道德困境。事实上,COVID-19 疫苗竞赛的加速发展进一步加剧了这一现象,带来了新的伦理困境,需要对其进行研究以确保这些疗法在临床上继续取得成功,并恢复社会对临床医学的信任。在本文中,我们讨论了两个主要的伦理困境:(1) 在成功候选疫苗出现时继续进行新疫苗试验的平衡和 (2) 盲法安慰剂组的弊端。因此,我们讨论了解决这些伦理困境的六种不同方法:(1) 继续进行安慰剂对照试验,(2) 从安慰剂对照过渡到开放标签,(3) 仅对高风险优先组进行揭盲,(4) 过渡到盲法阶梯楔形交叉设计,(5) 进展到盲法活性对照阶梯楔形交叉试验,以及 (6) 进行随机阶梯楔形社区试验。我们还为疫苗试验后期的相关利益相关者提出了一种决策算法。重要的是要记住,COVID-19 疫情的突发性并不意味着可以对核心道德价值观做出妥协。事实上,围绕这一主题的讨论和所做出的决定将仍然是一个有力的案例研究,并将成为未来所有此类情景的一个不断参考的例子。
cuproptosis是一种最近发现的细胞死亡形式,源于铜离子过度填充线粒体。这些离子直接接合脂酰化蛋白,促使其低聚和随后的铁硫簇损失。该序列诱导蛋白毒性应激,最终导致细胞死亡。2型糖尿病是由遗传和环境因素复杂的相互作用引起的一种慢性代谢疾病,尚未从其病因和发病机理上完全理解。错综复杂地与细胞死亡的各种方式相关,包括线粒体自噬,凋亡,凋亡和铁凋亡。研究发现,2型糖尿病患者的铜代谢受损,暗示了铜稳态在疾病进展中的独特作用。为此,本研究的目的是通过详尽地回顾现有文献来描述库糖凋亡与2型糖尿病之间的潜在相关性。通过综合有关库妥创作的相关研究,本文打算为2型糖尿病的发病机理和有针对性的治疗干预措施的发展奠定基础。最终目标是促进对2型糖尿病的更深入了解,并确定与库凋亡相关的新型治疗策略。
海事事故调查报告的任何部分不得作为任何民事或行政诉讼的证据,但由美国提起的行政诉讼除外。46 USC §6308。
治疗晚期甲状腺癌由于对各种治疗方式的抵抗而提出了挑战,从而限制了治疗选择。据我们所知,这项研究是第一个报告Temsirolimus与Nivolumab/ipilimumab的双重免疫疗法结合使用以治疗经过严重处理的晚期PDTC的效率。一名50岁的女性最初在她的右脖子上出现了快速扩大的肿块。随后的诊断表明甲状腺癌分化差,导致甲状腺切除术,然后进行术后放射治疗。四年后,对持续性咳嗽的检查显示,多个纵隔节点内这种疾病复发。对血液样本的遗传分析发现了肿瘤中的体细胞突变,涉及PTEN和TP53。尽管姑息放射线,lenvatinib和Nivolumab/ipilimumab治疗,该疾病仍在进行。因此,作为Nivolumab/ipilimumab方案的辅助作用,将Temsirolimus作为MTOR抑制剂发挥作用。这种组合方法在大约六个月的时间内产生了显着的临床改善和疾病控制。Temsirolimus可能抑制了异常激活的PI3K/AKT/MTOR信号传导途径,这是由PTEN遗传改变促进的,因此产生了有效的治疗反应。靶向药物和免疫疗法之间的这种协同作用为有限的治疗替代品的晚期PDTC患者提供了有希望的治疗策略。与其他靶向疗法结合使用时,观察到的SD或部分反应率范围为80%至97%。在先前的临床试验中,MTOR抑制剂已经证明了晚期甲状腺癌患者(包括患有PDTC患者)保持稳定疾病(SD)的能力。这些试验中的许多主要涉及分化的甲状腺癌,具有不同的遗传突变。甲状腺癌患者