结肠癌是美国癌症的主要原因之一。结肠癌是由结肠癌细胞基因组中的许多基因突变发展而来的。长的非编码RNA(LNCRNA)会导致许多癌症(包括结肠癌)的发育和进展。lncRNA已经并且可以通过簇状的定期间隔短的短质体重复序列(CRISPR)相关的核酸酶9(CRISPR/CAS9)系统的聚类重复序列的基因编辑技术来纠正,以减少结肠癌细胞的增殖。但是,许多用于运输基于CRISPR/CAS9的疗法的当前输送系统需要更多的安全性和效率。基于CRISPR/CAS9的治疗药需要安全有效的递送系统,以更直接,更明确地靶向结肠中存在的癌细胞。本综述将提供有关使用植物衍生的外泌体样纳米颗粒作为纳米载体的效率和安全性的相关证据,以提供基于CRISPR/CAS9的疗法以直接靶向结肠癌细胞。
纳米颗粒在接口处。没有纳米颗粒,系统将在系统中发生宏观分离,这两个阶段将根据其密度而定。[5,6] 2000年代初期证明了Bijels生产的第一个程序。第一个实验成功的方法是所谓的热旋缺失分解。[7]在2015年,Haase和同事改善了这种方法,开发了一种导致旋律分解的方法,该方法依赖于从三元混合物中去除溶剂的方法。[8]在这种情况下,将两个易碎的液体与溶剂混合在一起,该溶剂具有使它们相互溶于的能力。将所谓的混合物注入能够提取溶剂的连续相中,其突然去除会诱导两个剩余流体的旋律分解。最近,Clegg Research Group定义了一种越来越简单,更快的生产协议,涉及所涉及的组件之间的直接混合。[9]以这种策略分散到两种不混溶的液体中,需要一些表面活性剂。以这种方式,可以偏爱面部表面的不同局部曲率并稳定结构。与旋律分解不同,这里的比杰尔是通过应用高剪切速率形成的,因此,在初始阶段,产生了二元混合物的液滴。去除剪切物后,粗糙的过程开始将颗粒[1]在接口处捕获[1],直到融合融合为止。最近的Huang等人。同时,表面活性剂施加了液态液接触表面的局部曲率,有助于形成特征性的双连续结构。[1,2,10]仅使用简单的涡流混合简化了生产方法。这样做,他们采用了不同的分子量表面活性剂的组合来稳定不同的局部曲率,以与两个液相之间的界面稳定。在这种情况下,形成比耶尔的唯一必要条件是使用具有不同分子量的聚合物的混合物和足够高的颗粒来形成双连续性的互面膜间堵塞的乳胶凝胶。在最近几年中,比杰尔(Bijels)在许多工业领域表现出了有希望的应用,例如电池,燃料电池和许多其他领域,其中具有控制结构的多相材料引起了任何关注。[11]从医学角度来看,使用Bijels的主要优势居住在可能获得系统
对离子在半导体中产生的电离径迹的产生和传输进行 TCAD 模拟与可靠性以及辐射探测器的设计息息相关。具体而言,可靠性应用侧重于模拟在测试半导体元件是否易受软错误(逻辑器件、存储器,例如 [1] )和单粒子烧毁(功率器件,例如 [2] )影响时发生的瞬态现象。主要的 TCAD 工具已经包含模型和程序(例如 [3] ),但它们存在一些实际限制,例如仅限于单一类型的离子、有效能量范围的限制以及仅适用于硅的校准。此外,现有模型在数值上比较僵化,不易针对其他类型的离子、半导体和能量范围进行校准。本文提出了一个基于物理导向的 Crystal-Ball 函数 [4] 的半导体中低能离子沉积电荷的统一模型。特别关注能量范围分别为 0 – 10 MeV 和 0 – 160 MeV 的 α 粒子和质子。与常用模型相比,这种选择具有几个优势。特别是,α 粒子和质子使用相同的建模函数。此外,与现有解决方案相比,所提出的模型使用的校准参数更少,数值条件良好,并且其校准参数更透明,因为它们与可测量的物理量相关。最后,所提出的模型可以轻松扩展到不同的半导体和离子类型。
单电子控制的基本概念:添加单个电子之前和之后的导电岛(a)。添加单个未补偿的电子电荷会产生电场 E,这可能会阻止添加以下电子。基于单电子转移的设备:a) 单电子盒:这是一种基于单电子转移的电子设备。图 (a) 显示了概念上最简单的设备,即“单电子盒”。该设备仅由一个小岛组成,小岛与较大的电极(“电子源”)之间通过隧道屏障隔开。可以使用另一个电极(“栅极”)将外部电场施加到岛上,该电极与岛之间通过较厚的绝缘体隔开,这不允许明显的隧穿。该场改变了岛的电化学电位,从而决定了电子隧穿的条件。图 (b) 显示了特定的几何结构,其中“外部电荷” Q e = C 0 U 可以很容易地可视化,(c) 显示了“库仑阶梯”,即平均电荷 Q = -ne 对栅极电压的阶梯式依赖性,适用于几个温度值。栅极电压 U 的增加会吸引越来越多的电子进入岛。电子通过低透明度屏障的传输的离散性必然使这种增加呈阶梯状。
摘要我们模拟了用魔法角度扭曲的两个磁性对称性的磁性模式之间的顺磁颗粒的运动。所得的莫里图模式在磁性电位中形成平坦的通道,沿磁电势可以通过大于临界值的数量级的漂移力传输胶体颗粒。胶体运输也可以通过均匀外部场的调制环随时间变化的方向而变化,在这种情况下,传输受到拓扑保护。漂移和拓扑运输竞争或合作产生了几种运输模式。合作使在漂移力上移动颗粒比临界力弱。超临界漂移迫使运输模式之间的竞争结果,例如在整数步骤中粒子的平均速度和次谐反应的发生中增加。我们用平均粒子速度的动态相图来表征系统,这是拓扑传输方向的函数和漂移力的大小。
慢性阻塞性肺疾病(COPD),其特征是气道炎症和进行性气流限制,是全球死亡率的主要原因之一。支气管扩张剂,皮质类固醇或抗生素用于治疗COPD,但这些药物未正确递送到靶细胞或组织,这仍然是一个挑战。纳米颗粒(NPS)由于较小的大小,表面与体积比较高以及诸如靶向效应,患者依从性和改善的药物治疗之类的优势,因此对呼吸医学产生了极大的兴趣。由NP介导的药物的持续递送到靶向位点需要控制COPD中肺的趋化性,纤维化和慢性阻塞。开发无毒的多功能可生物降解的NP,可以帮助克服气道防御,将来对于COPD来说将是有益的。
摘要,由于基于化石的材料引起的环境问题,从生物基础资源中开发了可持续材料。木质素是一种化学复杂的生物聚合物,存在于血管植物的木质组织中。木质素具有许多有用的特性,例如抗氧化活性,热稳定性,紫外线吸收性,刚度等。然而,木质素的固有挑战与其复杂的分子结构以及在水和常见溶剂中的溶解度差有关。一种利用木质素的一种策略是制造木质素纳米颗粒(LNP),以在水中产生胶体稳定的分散体。本论文旨在开发基于LNP的材料,这些材料可用于光子晶体和光热膜用于节能功能材料。论文的第一部分重点是阐明在LNP-Photonic Crystal(L-PC)的离心辅助组装过程中发生的现象。L-PC。在后续工作中,开发了一种改进的方法来提高L-PC的产量。研究了诸如初始木质素浓度以及稀释时间对粒径和稀释时间的影响,并研究了形成的LNP的PDI。经验模型以预测LNP的大小,并成功用于控制L-PC的颜色。此外,研究了L-PC的纳米结构。LNP-Chitosan膜和涂料并将其应用于室内热管理。将LNP含量从10到40 wt%调节。在论文的第二部分中开发了木质素吸收太阳能(光波长:250–2500 nm),基于LNP的复合膜和具有光热性能的涂层的能力。通过合并LNP,与纯壳聚糖膜相比,膜的机械强度和光热性能得到了改善。此外,通过使用LNP作为还原剂制备LNP-Silver-Chitosan(CC-AG@LNP)膜。用紫外线辅助在LNP的表面降低了银离子,并使用杂交纳米颗粒来通过铸造来制备膜。CC-AG@LNP膜表现出改善的湿势,并针对大肠杆菌表现出抗菌性能(灭菌作用> 99.9%)。总的来说,本文既有助于木质素聚集的基本见解,又有助于胶体颗粒的胶合颗粒,并展示了控制其组装并掺入具有附加功能的宏观材料中的方法。
关于头颈部鳞状细胞癌(HNSCC)肿瘤发生的摘要最近的研究揭示了几种分子途径失调。磷脂酰肌醇-3-激酶(PI3K)信号传导途径经常在HNSCC中激活,使其成为疗法的有吸引力的靶标。PHT-427是PI3K的双重抑制剂,也是AKT/PDK1的哺乳动物靶标。这项研究评估了抑制剂PHT-427的抗癌疗效,该抑制剂基于肿瘤内注射中施用α-TOS(NP-427)中的聚合物纳米粒子(NP)(NP),该抗癌器的疗效(NP-427),该抑制剂纳米粒子(NP-427)的抗癌纳米颗粒(NP-427)施加到肿瘤内注射中的抗癌纳米粒子(NP-427)。合成了基于N-乙烯基吡咯烷酮(VP)的块共聚物和α-TOS(MTOS)的甲基丙烯酸衍生物(MTOS)的纳米载体系统,并将PHT-427加载到递送系统中。首先,我们通过测量肿瘤的体积,小鼠体重,存活以及肿瘤溃疡和坏死的发展来评估NP-427对肿瘤生长的影响。此外,我们测量了PI3KCA/AKT/PDK1基因表达,PI3KCA/AKT/PDK1蛋白水平,表皮生长因子受体(EGFR)和肿瘤组织中的血管生成。PHT-427封装提高了药物功效和安全性,如肿瘤体积减少,PI3K/AKT/PDK1途径的降低所证明,并改善了小鼠异种移植模型中的抗肿瘤活性和坏死诱导。EGFR和血管生成标记物(因子VIII)表达显着降低。在肿瘤部位施用封装的PHT-427证明有望用于HNSCC治疗。
摘要:磁氧化铁(IO)纳米颗粒具有较长的血液保留时间,生物降解性和低毒性已成为体外和体内生物医学应用的主要纳米材料之一。io纳米颗粒具有较大的表面积,可以设计用于提供大量的功能组,用于与涉及肿瘤靶向的配体的交联,例如单克隆抗体,肽或小分子,用于诊断成像或递送治疗剂的诊断成像。io纳米颗粒具有独特的顺磁性,从而产生显着的易感性效应,从而产生强t 2和t * 2对比度,以及在非常低浓度的磁共振成像(MRI)下的t 1效应,用于临床肿瘤学成像。我们回顾了靶向IO纳米颗粒的开发用于肿瘤成像和治疗的最新进展。关键字:氧化铁纳米颗粒,肿瘤成像,MRI,治疗