介绍和定义有关药用植物纳米颗粒的最重要点以及它们最重要的重要应用。范围审查是根据系统风格进行的。研究包括的研究涉及2000年至2023年之间发表的有关NA Notechnology和药用植物的主要信息。搜索是在Web of Science和PubMed等基层平台上进行的。许多研究将植物纳米颗粒的特性(例如稳定,表面积和高反应性及其尺寸较小)相关。发现纳米颗粒(NP)的大小从某些纳米到100 nm不等,并且由于其很小的尺寸而控制了它们的形态,NPS具有很大的表面区域,这使得它们适合许多应用。绿色纳米技术有可能成为一个越来越商业化的绿色冠军的行业。一般而言,源自药用植物的纳米颗粒为各种生物应用提供了有希望的途径。它们的绿色综合,生物相容性和潜在的治疗特性使它们成为有吸引力的研究领域,并有可能影响从药物到农业的领域。
近年来,能够引导细胞行为和形态的聚合物涂层引起了越来越多的关注。已知涂层特性(包括表面形态、表面结构和化学性质)会显著影响细胞粘附、定向、引导、分化、增殖和基因表达。[1–4] 此类涂层在生物传感器、生物芯片、药物输送装置、假体和植入物中也得到了有效应用。可以使用多种合成和天然来源的生物相容性聚合物。尽管合成聚合物在加工、稳定性和机械性能方面具有优势,但天然聚合物由于其生物活性、生物降解性和生物相容性而在许多应用中更受青睐。 [5– 6 ] 在天然聚合物中,壳聚糖是一种从几丁质中提取的线性多糖,由于其无毒、[7]可生物降解、[8]抗菌活性、[9]生物相容性[10]和免疫活性[11]等显著特性,已广泛应用于生物医学、环境和食品应用。此外,由于壳聚糖的可加工性,它可以设计成各种结构,包括薄膜、[12]膜、[13]微/纳米纤维、[14]绷带、[15]微/纳米颗粒[16]和水凝胶。[17]
摘要:传统上牙科中使用的抗菌剂的持续和不当使用导致了多重耐药 (MDR) 菌株的出现以及微生物的突变。这一问题导致了多种纳米粒子的开发,以对抗耐药性病原体。二氧化钛 (TiO 2 ) 纳米粒子由于其化学稳定性、无毒且前体廉价而成为有吸引力的抗菌剂。因此,我们探索了 TiO 2 基纳米分散体,通过使用众所周知的抗菌剂(例如次氯酸 (HOCl))来制备它们,以增强抗菌效果。在本研究中,合成并表征了溶胶-凝胶基 TiO 2 NPs-HOCl 纳米分散体。通过培养不同浓度的纳米分散体,使用变形链球菌、金黄色葡萄球菌、粪肠球菌和白色念珠菌菌株通过微量稀释测定来评估抗菌效果。为了评估细胞毒性作用,接种了根尖乳头干细胞 (SCAP),并使用 MTT 测定法进行评估。纳米分散体表现出增强的抗菌作用,几乎没有细胞毒性。基于 HOCl 的纳米分散体表现出更大的抗菌作用和高稳定性。因此,它可以用作治疗各种牙科病原体的有前途的抗菌剂。关键词:TiO 2 纳米粒子、HOCl、抗菌作用、细胞毒性作用、SCAP。
低温电子断层扫描(Cryo-ET)是一种生产细胞环境的高度脱尾3D图像(称为断层图)的技术。Cryo-Et通常是唯一可以在其天然环境中实现蛋白质和细胞结构几乎原子分辨率的技术。针对蛋白质结构确定的低温 - 肛门肛门技术的基本步骤是找到pogractions中感兴趣的蛋白质的所有实例,这是一种称为粒子拾取的任务。由于信噪比较低,靶蛋白的伪像的存在和巨大的多样性,颗粒拾取是一个具有挑战性的3D对象检测问题。现有的粒子采摘方法要么慢,要么仅限于选择一些感兴趣的小部分,这需要大量注释且难以获得训练数据集。在这项工作中,我们提出了Propicker,这是一种快速和通用的粒子采摘器,可以检测到训练集中包含的颗粒,并且可以在几分钟内处理断层图。我们的迅速设计允许根据输入提示选择性地检测体积中的特定蛋白质。我们的经验表明,培养基可以与最先进的通用拾取器达到相同的性能,同时更快地达到数量级。
《陆军航空》由陆军航空出版物公司每月出版一次,编辑和商务办公室位于 1 Cres twood Road, Westport, Conn. 06880。电话 (203) 227·8266。非 AAAA 会员的订阅费用:1 年 4.50 美元,2 年 8.00 美元(仅限美国大陆和邮政信箱地址);其他地址每年加收 7.50 美元。出版物中表达的观点和意见不一定代表陆军部的观点和意见。出版商 Arthur H. Kesten;主编 Dorothy Kesten;副主编 Jessie Borck;订阅履行:Beryl Beaumont。Ell:与任何陆军航空主题相关的所有文章,包括工业、AAAA、单位或主要指挥文章,均可按每字 3 美分到 5 美分的费率报销,前 2,000 个单词已发表。第二级邮费在康涅狄格州韦斯特波特支付。
lly Miirniittf iltiitt'tlul KiM('ia! I enctl U'h'i Yashington. 六月公司税提案本周将收到参议院的审议。何时开始审议该议题,取决于与关税有关的尚未审议的几个附表所用的时间。这些附表包括棉花线、棉花捆扎线、捆扎绳、钢轧机和结构钢。南方参议员将坚决支持免费捆扎和捆扎绳。他们争辩说,如果捆扎绳要列入不可征税的清单,以满足西北农民的需求,那么其他物品也应得到同样的待遇,以满足南方农民的需求。在处理完这些项目后,参议院将开始审议与所得税有关的公司税提案。先前由 Senium 提出的修正案。塔夫特总统的公司税条款将作为马海修正案的替代品提出,并将主要关注这两项条款的比较优缺点。支持 atlnillii-lratlo 的人认为成功的可能性很大。他们只敢为公司投八票 -
我们研究了使用氧化铁纳米核作为Fe 2 +离子的来源,研究了Fenton中的甲基蓝色的吸附/降解过程,其中纳米颗粒是通过易于电化学合成方法制备的。使用催化剂的2 g l -1和pH 3.5时的100 ppm污染物研究了降解动力学。使用两种不同的设置评估了此过程中温度的范围:在恒温浴中进行常规加热,并使用交替的磁性FI ELD进行选择性加热。与恒温浴相比,磁性感应加热过程导致污染物的降解更大。此外,在使用纳米粒子辅助的芬顿样工艺时,在芬顿均质过程中评估了溶液中Fe 2 +的最佳浓度。溶液中0.5 ppm fe 2 +的浓度通过使用2 g l -1的氧化铁纳米颗粒实现了相同的降解。动力学分析拟合了伪率的动力学,并指示随着温度升高,表观速率常数的线性增加。通过fi fi ting Arrhenius方程获得的降解过程的活化能为58 kJ mol-1。
有效地将 mRNA 或小分子药物递送到大脑是治疗急性缺血性中风 (AIS) 的重大挑战。为了解决这个问题,我们开发了靶向纳米药物来增加受伤大脑血脑屏障 (BBB) 内皮细胞中的药物浓度。缺血性中风期间的炎症会导致神经元持续死亡和梗塞体积增加。为了实现向发炎的 BBB 的靶向递送,我们将脂质纳米载体 (NC) 与可结合在 BBB 处表达的细胞粘附分子的抗体结合。在短暂性大脑中动脉闭塞小鼠模型中,靶向血管细胞粘附分子-1 (VCAM) 的 NC 实现了最高水平的脑递送,比非靶向 NC 高出近两个数量级。含有编码荧光素酶 mRNA 和 Cre 重组酶的 VCAM 靶向脂质纳米颗粒在缺血性脑组织中表现出选择性表达。缺血性中风后静脉注射抗炎药物,只有当它们被封装在 VCAM 靶向 NC 中时,才能使脑梗塞体积减少 62%(白细胞介素 10 mRNA)或 35%(地塞米松)。因此,VCAM 靶向脂质 NC 代表了一种新的平台,可在受损的半暗带血脑屏障内高度浓缩药物,从而改善 AIS。
与口服和肠胃外制剂相比,吸入的配方具有巨大的好处和增强药物治疗作用的潜力,因此具有吸引力。在可用的吸入配方中,用干杯吸入器(DPI)使用的粉末已成为首选选择,因为它们比其他吸入配方具有许多优势。此外,还需要采用粉末技术方法,并用于DPI配方的精致设计。要使用DPI公式提供适当的治疗,应将含有药物的吸入颗粒递送到单个患者肺的适当部位。必不可少的DPI制剂设计指定适合特定疾病的颗粒特性以及必须输送吸入颗粒的肺中的适当位置。本文侧重于设计DPI公式的当前粒子技术方法以及对肺中吸入的孢子的行为和沉积的数值模拟分析。作为将来的视角,从药物粒子技术的角度来看,实验和仿真方法的结合有望提高获得最大肺部递送的能力,并针对单个患者肺中沉积部位。2019年日本粉末技术协会。 由Elsevier B.V.和日本粉末技术协会出版。 这是CC BY-NC-ND许可证(http:// creativecommons。)下的开放访问文章 org/licenses/by-nc-nd/4.0/)。2019年日本粉末技术协会。由Elsevier B.V.和日本粉末技术协会出版。这是CC BY-NC-ND许可证(http:// creativecommons。org/licenses/by-nc-nd/4.0/)。
原位无动,可以允许使用较小的体积和较小尺寸的小部分。然而,当属于平坦底物上的粒子经过常规的ALD过程时,它将覆盖在所有裸露的表面(即顶部和侧面)上,但不在与底物相连的侧面。另外,在粒子和底物之间的纳米级间隙中生长的配合物将将两者结合在一起,这使得粒子的脱离不可能。在这里,我们报告了一种新颖的技术,用于在惰性聚苯乙烯(PS)膜上覆盖各个方面的单个颗粒。为了使无机膜不仅可以在粒子暴露的表面上增长,而且还可以在与聚苯乙烯接触的底部增长,这种技术重新利用了蒸气相渗透(VPI)[3,4],[3,4]基于ALD的材料杂交过程,基于ALD家族,包括序列序列(包括序列),包括序列INSTINTER INSTIMER INSTIMER INSTERTION(MPSRESINTION INVINTRAINTINT(MPI)[MPI)[MPI)[MPI,MPI)[MPI,MPI,MPI,MPI,MPI,MPI,MPI, (SIS),[6]和顺序蒸气浸润(SVI)。[7]在VPI期间,蒸气阶段金属前体刺激到聚合物基质中,并与其中的官能团反应形成有机无机杂种。[8-10]浸润合成的杂种显示增强的材料特性,已证明对多种应用有用,例如蚀刻罩,[11,12]抗侵蚀纳米纹状体,[13,14]光催化和光效率和光效应器,[15] PhotopotopodeTectors,[15] PhotopodeTectors,[16] 17],[17] [17],[17] [17] [17] [17] [17][19]