摘要 - 已经回顾了抗铁磁纳米结构中木元的激发,检测和传播的理论和实验研究。抗铁磁材料的特性,例如不存在宏观磁化,存在强交换相互作用以及复杂的磁晶体结构,使实施新型的内存和功能电子设备使得有可能。微观和纳米级的抗铁磁材料中可能的镁效应的研究需要新的实验和理论方法。在这篇综述中,描述并系统化了磁振荡激发的最新结果 - 磁磁性的抗铁磁材料。提出了抗铁磁铁和多层抗磁性异质结构的主要理论结果。模型用于描述包括纳米层结构中电流和光脉冲引起的现象,包括抗铁磁体。通过布里鲁因散射研究抗铁磁微体和纳米结构的方法,以及抗铁磁性纺纱型和镁质的应用的前景。
受控的具有最高频率和最短波长的相干旋转波是旋转和镁质的基石。在这里,使用Heisenberg Antiferromagnet RBMNF 3,我们证明激光诱导的Thz旋转动力学对应于对应于相互一致的反向传播波的成对,波向量到Brillouin区域的边缘,无法用磁性和抗模型(antiferromagnotic)旋转(nneellomagnetial)dictive(nneellomagnetial)。相反,我们建议使用自旋相关函数对这种自旋动力学进行建模。我们得出了后者的量子力学运动方程,并强调与磁化和抗磁磁性不同不同,抗铁磁体中的自旋相关性不表现出惯性。
量子自旋液体是量子物质的外来阶段,尤其与许多现代冷凝物质系统有关。dirac自旋液体(DSL)是一类无间隙的自旋液体,它们没有准粒子描述,并有可能在2 d晶格上的各种自旋1/2磁系统中实现。尤其是,在低能量下,(2 + 1)d量子型动力动力学在低能量上描述了平方晶格旋转1 /2磁体中的DSL,N f = 4 f = 4个无质量的dirac fermions的风格,最少耦合到出现的u(1)球场。存在相关的,对称性允许的单极扰动使得正方形晶格上的DSL本质上不稳定。我们认为,DSL描述了熟悉的Neel相(或价键固体(VBS)相)内的稳定连续相变。换句话说,DSL是物质单阶段内的“不必要”量子关键点。我们的结果提供了方形晶格DSL的新型视图,即临界旋转液体可以存在于Neel或VBS状态本身内,并且不需要离开这些常规状态。
补偿磁铁的物理学:抗铁磁铁,磁磁补偿的铁磁铁和合成反铁磁铁非常丰富,有时是独一无二的和出乎意料的。补偿磁铁中允许的新效果类型包括:超快(THZ)动力学,伪粘合元素,(自我)补偿的天空,交错的拓扑结构以及与自旋极化三胞胎超导性的兼容性。因此,补偿磁铁的使用构成了开发新的旋转组件的范式转移,超出了传统的铁磁体的可能性。这个特殊的收藏品为读者提供了最新的材料开发项目,探讨了尖端的基本物理和有希望的补偿磁铁应用。可以将其分为七个主题组,每个组都处理该学科的当前和快速增长的分支。
可重入局域化 (RL) 是一种最近才出现的突出现象,传统上与交错关联无序和跳跃二聚化的相互作用有关,这一点先前的研究表明了这一点。与这种范式相反,我们目前的研究表明跳跃二聚化并不是实现 RL 的关键因素。考虑到具有反铁磁序的螺旋磁系统,我们发现在没有跳跃二聚化的情况下,多个能量区域的自旋相关 RL。这种现象即使在热力学极限下仍然存在。通过对螺旋系统施加横向电场,引入了 Aubry-André-Harper 模型形式的关联无序,从而避免使用传统的替代无序。我们对观察到的可重入相进行有限尺寸缩放分析,以确定临界点,确定相关的临界指数,并检查与局域化转变相关的缩放行为。此外,我们还探索了参数空间,以确定可重入相发生的条件。本研究在紧束缚框架内进行了描述,为 RL 提供了一种新颖的视角,强调了电场、反铁磁有序和几何螺旋性的关键作用。还探讨了 RL 现象的潜在应用和实验实现。
在某些频率下,通过抗磁性有序的磁晶体传播的光传播可以表现出与双曲线极性子相关的各种现象。由于强烈的各向异性而出现了有趣且可能有用的现象,这是由镁质 - 波利顿共鸣驱动的强烈各向异性的,包括负折射和聚焦在扁平镜头中。在双曲介质中,这种不寻常的光学器件通常在各向异性垂直或与介质的界面平行时表现出来。然而,各向异性方向可以是控制波传播的关键药物。在这里,我们探讨了如何使用这种材料特性来大幅度修改光学现象。更具体地说,我们发现,通过将光轴的方向倾斜相对于抗铁磁晶体的表面,可以获得不对称的波传播,进而可以用来将其用于横向调节由双胞胎介质制成的平面镜头的焦点。
四方重费米子超导体 CeRh2As2 (Tc=0.3K) 对 Bkc 表现出 14T 的极高临界场。它在超导态之间经历场驱动的一级相变,可能从自旋单重态转变为自旋三重态超导。为了进一步了解这些超导态和磁性的作用,我们利用中子散射探测 CeRh2As2 中的自旋涨落。我们发现动态 ðπ;πÞ 反铁磁 (AFM) 自旋关联具有各向异性的准二维关联体积。我们的数据将相应 N'eel 级的交错磁化强度的上限设置为 0.31μB,T=0.08K。密度泛函理论计算将 Ce4f 电子视为核心态,表明 AFM 波矢连接费米面的很大一部分区域。我们的研究结果表明当ℏω<1.2meV时CeRh2As2中的主要激发是磁性的,并且表明CeRh2As2中的超导性是由与近似量子临界点相关的AFM自旋波动介导的。
D. F. Liu 1,2 *†,Y。F. Xu 3 *†,H。Y. Hu 4 *,J。Y. Liu 5,6 *,T。P. Ying 7 *,Y。Y.
1 MOE的关键实验室,用于凝结物质的非平衡合成和调节,Shaanxi省级高级材料和介质物理学的主要实验室,XI'AN JIAOTONG大学,XI'AN,XI'AN,710049,710049,中国2个国家主要的实验室,是纳尼型纳米型材料和量化量的纳米级材料和量子量的国家主要实验室, 200433,中国3个州制造系统工程钥匙实验室,西安·贾东大学,西安,710049,中国4号材料材料纳米结构研究中心,国家材料科学研究所,1-1-1-1-1-1-1-1-1-1-1-1-15-0044,日本305-0044,日本5日本6东南大学物理学院量子材料和设备的主要实验室,211189,中国南京7 Zhangjiang Fudan International Innovation Center,Fudan University,上海2011年
最近,在理论上提出并实现了电子状态的自旋分裂(SS)的非常规的抗铁磁铁,其中包含指向不同方向的矩矩的磁性sublattics通过一组新型的符号来连接。这样的SS是实质性的,依赖性的,并且与自旋 - 轨道耦合(SOC)强度无关,使这些磁铁有望用于抗磁性旋转旋转。在此结合了角度分辨光发射光谱(ARPE)和密度功能理论(DFT)计算,这是一项对CRSB的系统研究,是一种金属旋转式抗速率抗fiferromagnet候选,具有Néel温度T n = 703 K。数据揭示了沿平面外和平面动量方向的CRSB的电子结构,从而使各向异性K依赖性SS与计算结果非常吻合。在非对称动量点下,此类SS的大小至少达到至少0.8 eV,这显着高于最大的已知SOC诱导的SS。这种化合物扩大了抗磁性旋转型材料的材料的选择,并且很可能会刺激随后对在室温下起作用的高效率旋转器件的研究。
