我绘制的研究是两项具有巨大重要性的研究 - 现实的玛金(26)和一些具有真实魔术的科学冒险(5)。 这些作品明确地表明了无条件的爱在心理现象中所发挥的至关重要的作用,例如直观的感知和集中意图。 在后者中,威廉·蒂勒(William Tiller)和他的同事(5)记录了集中意图如何在心脏连贯性的信封中coco骨时如何诱导物理现实的变化。 这提示了量子真空中订单的“新”维度的创建,还可以访问其巨大的“自由”能量存储,从而为变化提供动力。 电生理证据表明,这是一种超相干状态,在ECG频谱中,它可以通过多尺度纠缠延伸到量子结构域。我绘制的研究是两项具有巨大重要性的研究 - 现实的玛金(26)和一些具有真实魔术的科学冒险(5)。这些作品明确地表明了无条件的爱在心理现象中所发挥的至关重要的作用,例如直观的感知和集中意图。在后者中,威廉·蒂勒(William Tiller)和他的同事(5)记录了集中意图如何在心脏连贯性的信封中coco骨时如何诱导物理现实的变化。这提示了量子真空中订单的“新”维度的创建,还可以访问其巨大的“自由”能量存储,从而为变化提供动力。电生理证据表明,这是一种超相干状态,在ECG频谱中,它可以通过多尺度纠缠延伸到量子结构域。
背景/客观•甘蔗(Saccharum spp。Hybrid)是用于生物燃料和餐桌糖商业生产的主要原料。优化冠层结构以改善光捕获,具有提高生物质产量的巨大潜力。ligulesless1(LG1)参与草中叶状的叶子和耳膜发育。然而,确认假定的甘蔗LG1基因座并定义甘蔗中最佳叶角是具有挑战性的。•在这项研究中,我们使用CRISPR/CAS9证明了甘蔗中假定的LG1基因的有效,多型,靶向诱变。与先前的LG1突变研究相比,根据LG1的共编辑频率获得了一系列叶角表型,从而更深入地研究该性状。在鉴定LG1等位基因变体和通过CRISPR/CAS9靶向诱变的重组DNA载体的构建后,通过16个基因编辑的甘蔗线进行了重组DNA载体,并以7.4至100%的LG1读数为7.4至100%的共同编辑频率。 在随机温室和现场试验中评估 LG1突变型线,用于叶片倾斜角,渗透到冠层,生物质积累和与生物质相关的性状中。 结果温室和现场评估显示了叶片倾斜角的意识形态,生物质产量显着增加。 叶倾角角对应于向冠层和耕种数的光传输。在鉴定LG1等位基因变体和通过CRISPR/CAS9靶向诱变的重组DNA载体的构建后,通过16个基因编辑的甘蔗线进行了重组DNA载体,并以7.4至100%的LG1读数为7.4至100%的共同编辑频率。LG1突变型线,用于叶片倾斜角,渗透到冠层,生物质积累和与生物质相关的性状中。结果温室和现场评估显示了叶片倾斜角的意识形态,生物质产量显着增加。叶倾角角对应于向冠层和耕种数的光传输。线L35在〜12%的LG1 ngs读取中表现出功能丧失的线读数增加了18%的干生物量收益率,叶片倾斜角降低了56%,耕种数量增加了31%,节间数量增加了25%。
仍然可以使用ECH 12设定托盘卡车生产率和效率的新设置标准:不再需要手工托盘卡车 - 提升容量最高为1,200千克,可以使用ECH 12的12。电动提升和驾驶明显减轻了操作员的压力,就像耕作机的符合人体工程学设计在操作过程中可以自然的手部位。紧凑的低升力托盘卡车由创新的锂离子技术提供动力,这特别是不维护和可靠的。锂离子电池非常容易更换,并且可以轻松地插入
运营成本,降低枯竭的旱地农业产量。MPKV开发的旱地农业开发的改进的工具包包括1个。拖拉机操作的Phule自动可逆MB犁2。拖拉机操作的Phule mole犁3。拖拉机操作的phule检查盆地前4。拖拉机操作的Phule Basin Lister 5。拖拉机操作的phule多功能架架平板6。小型HP(小于25 hp)拖拉机操作的Phule多螺旋播7。电力分配器绘制的Phule多功能种植者8。Power操作的Phule Chaff Cutter9。Bullock绘制多功能Phule Sheti Yantra(03 Tyne)10。手动操作的鼓槌收割机11。手动操作高粱驯鹿
•赫利牧场模型(Thornley,1998)是托管牧场的详细机械模型。•Basgra(Van Oijen等,2015)及其后代Basgra_n(Höglind等,2020)是多年的草原模型,包括分er动力学。•Prograss(Lazzarotto等,2009)的开发是为了捕获草/三叶草混合物中的相互作用。•PASIM的重点(Graux等,2011)是在气候变化条件下对牲畜生产的研究。•Modvege(Jouven等,2006)是一种机械模型,旨在捕获具有最小必需输入参数的主要过程。•Moorepark St Gilles(Ruelle等,2018)和Gras-Sim(Kokah等,2023)模型都扩展了土壤水和氮动力学和管理方面的模块。
AISTATS 2021学习公平评分功能:公平定义,算法和两分等级的概括范围。R. Vogel,A。Bellet,S。Clémençon。aistats 2020一种多类分类方法来标签排名。S.Clémençon和R. Vogel。ESANN 2020加权ERM:基于重要性抽样的转移学习。R. Vogel,M。Achab,S。Clémençon,C。Tiller。ECML 2019年的折衷方案,以大规模分布的术估计和学习。R. Vogel,A。Bellet,S。Clémençon,O。Jelassi和G. Papa。 LOD 2019,基于树的方法用于相似性学习。 S.Clémençon和R. Vogel。 icml 2018是对重点曲线优化的监督相似性学习的概率理论。 R. Vogel,A。Bellet和S.Clémençon。R. Vogel,A。Bellet,S。Clémençon,O。Jelassi和G. Papa。LOD 2019,基于树的方法用于相似性学习。S.Clémençon和R. Vogel。icml 2018是对重点曲线优化的监督相似性学习的概率理论。R. Vogel,A。Bellet和S.Clémençon。
我们还要感谢以下机构,组织和个人的贡献:美国步道,土地管理局,俄勒冈州中部,俄勒冈州联盟,尤金公园市和开放空间部,波特兰公园和休闲部,地铁,地铁,俄勒冈州公园和娱乐部,俄勒冈州欧里期式官员,俄勒冈州官员,俄勒冈州官员,俄勒冈州官员,俄勒冈州官员,俄勒冈州官员,俄勒冈州俄勒冈州或娱乐,俄勒冈州山地自行车联盟,俄勒冈木材步道联盟,西北步道联盟,北海岸步道联盟,太平洋克雷斯特步道协会,俄勒冈州的步道,威拉马兰公园和娱乐部,史蒂夫·克鲁格,埃莱恩·凯文妮,伊莱恩·凯文(Elaine Keveny),娜塔莉·费拉罗(Natalie Ferraro),盖伊·哈姆布林(Natalie Ferraro),盖伊·哈姆布林(Guy Hamblin)弗雷泽·麦克唐纳(Fraser MacDonald),贝基·沃尔夫(Becky Wolf),比尔·泰勒(Bill Taylor),丹妮·帕沃尼(Dani Pavoni),凯文·罗威尔(Kevin Rowell),扎克·贾瑞特(Zach Jarrett),泰森·克罗斯(Tyson Cross),达娜·亨德里克斯(Dana Hendricks),巴雷特·布朗(Dana Hendricks),巴雷特·布朗(Barrett Brown),金·麦卡雷尔(Kim McCarrel Heins,Nick Weber,Jeanne Klein,Nick McDaniel,Jameson Whitehead,Jodi Bellefeuille,Jody Matz,Mike Law,Mike Law,Ian Caldwell,Cailin O'Brien-Feeney,Robin Wilcox,Matt Davey,Matt Davey,Stephen Woodward,Stephen Woodward,Michael Dalby,Michael Dalby,Ashley Schahfer。
植物通过整合了各种植物的信号通路,发展了复杂的机制,以协调其生长和压力反应。然而,精确的分子机制,在植物激素信号通路的整齐整合的精确分子机制基本上是晦涩的。在这项研究中,我们发现大米(oryza sativa)短interdes1(shi1)突变体表现出典型的生长素缺陷的根源发育和力觉响应,铜氨基固醇(BR)缺陷的植物构建和粒度以及增强的Abscisic Acid Acid Acid Acid Acid Accisic Adived Drought耐用的植物耐受性。此外,我们发现SHI1突变体对生长素和BR治疗也是不良的,但对ABA高度敏感。此外,我们表明OSSHI1通过激活Osyuccas和D11的表达来促进生长素和BR的生物合成,同时通过诱导OSNAC2的表达来抑制ABA信号传导,OSNAC2的表达编码ABA信号的抑制剂。此外,我们证明了3类转录因子,生长素反应因子19(OSARF19),叶片和分er角增加了控制器(LIC),以及OSZIP26和OSZIP86,直接与Osshi1的启动子结合,并分别调节其对响应的响应,分别对ABR,BR和ABA的反应。总的来说,我们的结果揭示了一个以OSSHI1为中心的转录调节枢纽,该枢纽策划了多个植物激素信号通路的整合和自喂后调节,以协调植物的生长和压力适应。
商业蔬菜生产是路易斯安那州农业经济的重要组成部分。1990 年,22,000 英亩的商业蔬菜生产为农场带来了 3910 万美元的总收入。加上收获后 1950 万美元的附加值,该州的总净收入达到 58,600,000 美元。我们州的土壤和气候非常适合生产多种蔬菜作物。与西部蔬菜种植者相比,路易斯安那州的农民拥有许多优势,例如,我们有充足的灌溉水源,而且我们靠近东部和中西部的主要市场。随着商业蔬菜种植的竞争越来越激烈,使用最有效的栽培方法变得必不可少。除了许多规模较小、长期从事蔬菜种植的农民外,近年来,路易斯安那州也开始出现规模较大、机械化程度更高的蔬菜种植作业。在某些情况下,农民正在从农作物转向商业蔬菜生产。农作物种植、施肥和耕作方面的耕作实践对于高价值蔬菜作物来说不够精确。采用精确耕作实践可以帮助所有路易斯安那州的蔬菜种植者提高竞争力。本公告中推荐的实践构成了精确耕作系统,包括:苗床修整、精确播种、使用锥形导轮进行精确耕作和施肥(种植前和侧施肥)以及旋耕机耕作。这种精确耕作系统同样适用于小型和大型蔬菜经营。