我们考虑深度神经网络 (DNN) 在具有挑战性的一次性/后训练环境中的模型压缩问题,在该环境中,我们获得了一个经过精确训练的模型,并且必须仅基于少量校准输入数据对其进行压缩,而无需进行任何重新训练。鉴于新兴的软件和硬件支持通过加速剪枝和/或量化来执行压缩模型,这个问题变得很普遍,并且已经针对这两种压缩方法分别提出了性能良好的解决方案。在本文中,我们介绍了一种新的压缩框架,该框架在统一的环境中涵盖权重剪枝和量化,具有时间和空间效率,并且大大提高了现有后训练方法的实际性能。在技术层面,我们的方法基于 [LeCun、Denker 和 Solla,1990] 的经典最佳脑外科医生 (OBS) 框架的精确和高效实现,该框架扩展到还涵盖现代 DNN 规模的权重量化。从实际角度来看,我们的实验结果表明,它可以显著改善现有后训练方法的压缩-准确度权衡,并且可以在后训练环境中实现修剪和量化的准确复合应用。
二氧化碳(CO 2)通过矿化捕获,利用和储存(CCU)已被证明可减少独立植物中的温室气体(GHG)排放,而且还可以减少大规模气候供应链中的二氧化碳和储存率(GHG)的排放。然而,通过矿化实施大规模供应链为CCUS实施大规模的CCU,需要大量的金融投资,因此对其经济学有深刻的了解。目前的文献估计了独立植物的CO 2矿化经济学。CO 2矿化工厂具有特定的a)CO 2供应,b)固体原料供应,c)能源供应和d)产品市场,但工厂级成本估计并不能说明大型且潜在的共享供应链。在我们的研究中,我们通过在欧洲设计和分析CCU的成本优势供应链来评估矿化的经济学。我们的结果表明,避免了供应链中各个矿化厂的CO 2E减排成本范围为110至312欧元 /吨。通过矿化而提出的CCUS供应链可以避免欧洲的60吨Co 2e /年以2E减排成本可与CO 2捕获和地质存储相当。此外,我们确定了五个可以为CO 2矿化提供强大业务案例的地点。因此,分析显示了如何将CO 2矿化添加到欧洲的温室气体缓解组合中的途径。
沼气植物的部署固有地取决于地理考虑。这项研究主张将地理数据与人工智能算法(称为Geoai)整合在一起,作为一种可靠的可靠方法,用于精确预期这些最佳位置。考虑到上述,这项研究努力预测为在农业中实施甘蔗沼气植物的最佳地点。通过利用涵盖物理,生物和人类方面的地理数据,以及使用六种不同的分类算法的利用(CART,C4.5,C5.0,Random Forest,XGBoost和GBM),性能比较变得很重要。训练阶段特别针对圣保罗的状态,由于其植物的浓度升高,其最有效的模型随后应用于Goiás状态。随机森林算法实现的杰出性能强调了其在描述Goiás甘蔗沼气植物部署的有利地点的功效。这种方法论方法在简化决策过程,描绘有利于甘蔗生产的沼气生产的地区有望,从而优化了生物量利用,并同时减轻了环境影响和安装支出。GEOAI的融合不仅促进了可再生能源的扩散,而且还为缓解气候变化而做出了实质性的贡献,从而促进了更广泛的全球能量转变。
近年来,提高绿色能源的使用率以满足日益增长的能源需求和应对全球变暖已成为各国的重要目标之一。因此,将可再生能源整合为分布式发电变得越来越流行。在本研究中,为土耳其代尼兹利省萨拉伊科伊区一个 100 户家庭的电气化设计了混合可再生能源系统,并使用电力可再生能源混合优化模型程序来优化所需的组件输出,以实现最佳的经济和环境效果。共创建了六种混合可再生能源系统设计,三种并网和三种独立系统,这些系统采用了光伏板、风力涡轮机、柴油发电机、电池储能系统和转换器等不同组件的组合。最经济的设计是仅使用太阳能的并网系统,单位能源成本为 0.0362 美元/千瓦时,而最具成本效益的是包含太阳能、风能和电池的独立系统,成本为 1.61 美元/千瓦时。从环境角度来说,离网系统恰恰相反,排放的二氧化碳较少,而并网系统排放的二氧化碳较多。
本文定义了一种使用AI来增强人类智能的新方法,以解决最佳目标。我们提出的AI Indigo是通过质量优化进行的,是构成态度的缩写。与人类合作者结合使用时,我们将联合系统Indigovx称为虚拟专家。系统在概念上很简单。我们设想将这种方法应用于游戏或业务策略,人类提供战略环境和AI提供最佳,数据驱动的动作。Indigo通过迭代反馈循环运作,利用人类专家的上下文知识以及AI的数据驱动的见解,以制定和完善策略,以实现明确定义的目标。使用量化的三分学模式,这种杂交使联合团队能够评估策略并完善计划,同时适应实时的挑战和变化。
摘要:小型化核电机组的发展和碳交易市场的完善为实现综合能源系统低碳运行提供了新途径。本研究将NP机组和碳交易机制引入综合能源系统,构建新型低碳调度模型。针对NP机组引入导致的系统运行灵活性下降的问题,一方面对NP机组进行供热改造,使其成为热电联产机组,扩大其运行范围,提高其运行灵活性;另一方面在综合能源系统引入储电系统、储热系统、电转气机组等可进行能量时间转换或能量形式转换的辅助设备,共同提高系统运行灵活性。在模型求解阶段,利用离散化步长变换,将考虑可再生能源出力不确定性的机会约束规划(CCP)模型转化为等效的混合整数线性规划(MILP)模型。基于华北地区某综合能源系统实际数据搭建的测试系统表明,所提方法具有良好的经济效益和低碳环保效益。关键词:综合能源系统;核电机组;碳交易;碳排放;核能供热;低碳;机会约束;可再生能源发电不确定性。
具有 13 个条目的 Dict{String,Any}:“source_type”=>“matpower” “name”=>“pglib_opf_case5_pjm” “source_version”=> v“2.0.0” “baseMVA”=> 100.0 “per_unit”=> true “bus”=> Dict{String,Any}(...) “branch”=> Dict{String,Any}(...) “dcline”=> Dict{String,Any}(...) “gen”=> Dict{String,Any}(...) “load”=> Dict{String,Any}(...) “shunt”=> Dict{String,Any}(...) “storage”=> Dict{String,Any}(...)
Layton,D。“ Chatgpt - 我们如何到达今天的位置 - GPT开发的时间表。” https://medium.com/@dlaytonj2/chatgpt-how-we-we-got-to-wher-we-we-are-today-a-timeline-timeline-fppt-development-f7a35dcc660e(2023)。Lubbad,M。“ GPT-4参数:无限制指南NLP的游戏规则改变者。”https://mlubbad.medium.com/the-ultimate-guide-to-gpt-4-parameters-verything-nything-to-to-to-to-to-to-about-about-about-about-about-about-nlps-changer-changer-109b87678555a(2023)。Shree,P。“开放AI GPT模型的旅程。”https://medium.com/walmartglobaltech/the-journey-open-open-ai-gpt-models-32d95b7b7fb2(2020)。
如何开发精简而准确的深度神经网络对于实际应用至关重要,尤其是对于嵌入式系统中的应用。尽管之前沿着该研究方向的工作已经显示出一些有希望的结果,但是大多数现有方法要么无法显著压缩训练有素的深度网络,要么需要对修剪后的深度网络进行大量再训练才能重新提高其预测性能。在本文中,我们提出了一种新的深度神经网络分层修剪方法。在我们提出的方法中,每个单独层的参数都基于相应参数的分层误差函数的二阶导数独立地进行修剪。我们证明,修剪后最终的预测性能下降受每层造成的重构误差的线性组合限制。通过适当控制分层误差,只需对修剪后的网络进行轻度再训练即可恢复其原始的预测性能。我们在基准数据集上进行了大量实验,以证明我们的修剪方法与几种最先进的基线方法相比的有效性。我们的工作代码发布在:https://github.com/csyhhu/L-OBS 。
已经开发出一种优化工具来确定电转甲醇子系统(电解器、氢气和电池存储以及甲醇生产厂)的最佳配置和规模,以最大限度地降低电转甲醇生产成本。研究结果表明,并网配置比离网配置更具经济效益。对于 300,000 吨/年的甲醇生产能力,并网配置实现了 1,094 欧元/吨的甲醇平准成本 (LCOM),比离网配置低 20%。离网配置的最佳生产规模为 70,000 吨/年,LCOM 为 1,220 欧元/吨。对于并网配置,较大的工厂受益于规模经济,年产能为 100 万吨的工厂可获得 1,072 欧元/吨的 LCOM。
